Skip to main content
Log in

A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric paper-based sensor is proposed for the rapid monitoring of six major organophosphate and carbamate pesticides. The assay was constructed by dropping gold and silver nanoparticles on the hydrophilic zones of a paper substrate. The nanoparticles were modified by L-arginine, quercetin, and polyglutamic acid. The mechanism of sensing is based on the interaction between the pesticide and the nanoparticles. The color of nanoparticles changed during the interactions. A digital camera recorded these changes. The assay provided a unique response for each studied pesticide. This method can determine six individual pesticides including carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos. The limit of detection for these pesticides were 29.0, 22.0, 32.0, 17.0, 45.0, and 36.0 ng mL−1, respectively. The assay was applied to simultaneously determine the six studied pesticides in a mixture using the partial least square method (PLS). The root mean square errors of prediction were 11, 8.7, 9.2, 10, 12, and 11 for carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos, respectively. The paper-based device can differentiate two types of studied pesticide (organophosphate and carbamate) as well as two types of organophosphate structures (oxon and thion). Furthermore, this sensor showed high selectivity to the pesticides in the presence of other potential species (e.g., metal ions, anions, amino acids, sugar, and vitamins). This assay is capable of determining the pesticide compounds in tap water, apple juice, and rice samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pundir CS, Malik A, Preety (2019) Bio-sensing of organophosphorus pesticides: a review. Biosens Bioelectron 140:111348. https://doi.org/10.1016/j.bios.2019.111348

    Article  CAS  PubMed  Google Scholar 

  2. Xu ML, Gao Y, Han XX, Zhao B (2017) Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. J Agric Food Chem 65:6719–6726. https://doi.org/10.1021/acs.jafc.7b02504

    Article  CAS  PubMed  Google Scholar 

  3. Bordbar MM, Nguyen T-A, Tran AQ, Bagheri H (2020) Optoelectronic nose based on an origami paper sensor for selective detection of pesticide aerosols. Sci Rep. 10: 17302.https://doi.org/10.1038/s41598-020-74509-8

  4. Grimalt S, Dehouck P (2016) Review of analytical methods for the determination of pesticide residues in grapes. J Chromatogr A 1433:1–23. https://doi.org/10.1016/j.chroma.2015.12.076

    Article  CAS  PubMed  Google Scholar 

  5. Souza Tette PA, Guidi LR, De Abreu Glória MB, Fernandes C (2016) Pesticides in honey: a review on chromatographic analytical methods. Talanta 149:124–141. https://doi.org/10.1016/j.talanta.2015.11.045

    Article  CAS  PubMed  Google Scholar 

  6. Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304. https://doi.org/10.1016/j.talanta.2016.04.046

    Article  CAS  PubMed  Google Scholar 

  7. Van Dyk JS, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307. https://doi.org/10.1016/j.chemosphere.2010.10.033

    Article  CAS  PubMed  Google Scholar 

  8. Yan X, Li H, Su X (2018) Review of optical sensors for pesticides. TrAC - Trends Anal Chem 103:1–20. https://doi.org/10.1016/j.trac.2018.03.004

    Article  CAS  Google Scholar 

  9. Zhao M, Yu H, He Y (2019) A dynamic multichannel colorimetric sensor array for highly effective discrimination of ten explosives. Sensors Actuators B Chem 283:329–333. https://doi.org/10.1016/j.snb.2018.12.061

    Article  CAS  Google Scholar 

  10. Bordbar MM, Hemmateenejad B, Tashkhourian J, Nami-Ana SF (2018) An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants. Microchim Acta 185: https://doi.org/10.1007/s00604-018-3021-1

  11. Khoshfetrat SM, Bagheri H, Mehrgardi MA (2018) Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide. Biosens Bioelectron 100:382–388. https://doi.org/10.1016/j.bios.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  12. Bordbar MM, Tashkhourian J, Hemmateenejad B (2019) Structural elucidation and ultrasensitive analyses of volatile organic compounds by paper-based nano-optoelectronic noses. ACS Sensors 4:1442–1451. https://doi.org/10.1021/acssensors.9b00680

    Article  CAS  PubMed  Google Scholar 

  13. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58. https://doi.org/10.1007/s00604-016-1967-4

    Article  CAS  Google Scholar 

  14. Della Pelle F, Scroccarello A, Scarano S, Compagnone D (2019) Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Anal Chim Acta 1051:129–137. https://doi.org/10.1016/j.aca.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Della Pelle F, Scroccarello A, Sergi M, Mascini M, del Carlo M, Compagnone D (2018) Simple and rapid silver nanoparticles based antioxidant capacity assays: reactivity study for phenolic compounds. Food Chem 256:342–349. https://doi.org/10.1016/j.foodchem.2018.02.141

    Article  CAS  PubMed  Google Scholar 

  16. Amirjani A, Fatmehsari DH (2018) Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta 176:242–246. https://doi.org/10.1016/j.talanta.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  17. Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556. https://doi.org/10.1016/j.talanta.2018.02.088

    Article  CAS  PubMed  Google Scholar 

  18. Xia Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789. https://doi.org/10.1016/j.bios.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  19. He Y, Wu Y, Fu JZ, Bin WW (2015) Fabrication of paper-based microfluidic analysis devices: a review. RSC Adv 5:78109–78127. https://doi.org/10.1039/c5ra09188h

    Article  CAS  Google Scholar 

  20. Tang N, Mu L, Qu H, Wang Y, Duan X, Reed MA (2017) Smartphone-enabled colorimetric trinitrotoluene detection using amine-trapped polydimethylsiloxane membranes. ACS Appl Mater Interfaces 9:14445–14452. https://doi.org/10.1021/acsami.7b03314

    Article  CAS  PubMed  Google Scholar 

  21. Piriya VSA, Joseph P, Daniel SCGK et al (2017) Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng C 78:1231–1245. https://doi.org/10.1016/j.msec.2017.05.018

    Article  CAS  Google Scholar 

  22. Jemmeli D, Marcoccio E, Moscone D, et al (2020) Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 216: https://doi.org/10.1016/j.talanta.2020.120924

  23. Colozza N, Kehe K, Dionisi G, Popp T, Tsoutsoulopoulos A, Steinritz D, Moscone D, Arduini F (2019) A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens Bioelectron 129:15–23. https://doi.org/10.1016/j.bios.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  24. Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064. https://doi.org/10.1021/ac901714h

    Article  CAS  PubMed  Google Scholar 

  25. Luckham RE, Brennan JD (2010) Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol-gel/enzyme/gold nanoparticle composites. Analyst 135:2028–2035. https://doi.org/10.1039/c0an00283f

    Article  CAS  PubMed  Google Scholar 

  26. Badawy MEI, El-Aswad AF (2014) Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. Int J Anal Chem 2014: https://doi.org/10.1155/2014/536823, 2014, 1, 8

  27. Kim HJ, Kim Y, Park SJ, Kwon C, Noh H (2018) Development of colorimetric paper sensor for pesticide detection using competitive-inhibiting reaction. Biochip J 12:326–331. https://doi.org/10.1007/s13206-018-2404-z

    Article  CAS  Google Scholar 

  28. Wei Z, Li H, Wu J, Dong Y, Zhang H, Chen H, Ren C (2019) 3DRGO-NiFe2O4/NiO nanoparticles for fast and simple detection of organophosphorus pesticides. Chinese Chem Lett 31:177–180. https://doi.org/10.1016/j.cclet.2019.05.031

    Article  CAS  Google Scholar 

  29. Chen H, Hu O, Fan Y, et al (2020) Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP. Food Chem 327. https://doi.org/10.1016/j.foodchem.2020.127075

  30. Nouanthavong S, Nacapricha D, Henry CS, Sameenoi Y (2016) Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst 141:1837–1846. https://doi.org/10.1039/c5an02403j

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q, Yin Q, Fan Y, Zhang L, Xu Y, Hu O, Guo X, Shi Q, Fu H, She Y (2019) Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides. Talanta 199:46–53. https://doi.org/10.1016/j.talanta.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Ma X, Jia M, Li B, Rong J, Yang X (2019) Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D. Analyst 144:1282–1291. https://doi.org/10.1039/c8an02051e

    Article  CAS  PubMed  Google Scholar 

  33. Liu W, Guo Y, Luo J, Kou J, Zheng H, Li B, Zhang Z (2015) A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochim Acta - Part A Mol Biomol Spectrosc 141:51–57. https://doi.org/10.1016/j.saa.2015.01.020

    Article  CAS  Google Scholar 

  34. Mei Q, Jing H, Li Y, Yisibashaer W, Chen J, Nan Li B, Zhang Y (2016) Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens Bioelectron 75:427–432. https://doi.org/10.1016/j.bios.2015.08.054

    Article  CAS  PubMed  Google Scholar 

  35. Mandal S, Gole A, Lala N, Gonnade R, Ganvir V, Sastry M (2001) Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir 17:6262–6268. https://doi.org/10.1021/la010536d

    Article  CAS  Google Scholar 

  36. Zare D, Akbarzadeh A, Barkhi M, Khoshnevisan K, Bararpour N, Noruzi M, Tabatabaei M (2012) L-arginine and L-glutamic acid capped gold nanoparticles at physiological PH: synthesis and characterization using agarose gel electrophoresis. Synth React Inorganic, Met Nano-Metal Chem 42:266–272. https://doi.org/10.1080/15533174.2011.609855

    Article  CAS  Google Scholar 

  37. Taefi Z, Ghasemi F, Hormozi-Nezhad MR (2020) Selective colorimetric detection of pentaerythritol tetranitrate (PETN) using arginine-mediated aggregation of gold nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc 228. https://doi.org/10.1016/j.saa.2019.117803

  38. Vanaraj S, Keerthana BB, Preethi K (2017) Biosynthesis, characterization of silver nanoparticles using quercetin from Clitoria ternatea L to enhance toxicity against bacterial biofilm. J Inorg Organomet Polym Mater 27:1412–1422. https://doi.org/10.1007/s10904-017-0595-8

    Article  CAS  Google Scholar 

  39. Rawat KA, Kailasa SK (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchim Acta 181:1917–1929. https://doi.org/10.1007/s00604-014-1294-6

    Article  CAS  Google Scholar 

  40. Stevanović M, Bračko I, Milenković M, Filipović N, Nunić J, Filipič M, Uskoković DP (2014) Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomater 10:151–162. https://doi.org/10.1016/j.actbio.2013.08.030

    Article  CAS  PubMed  Google Scholar 

  41. Suvarna S, Das U, KC S et al (2017) Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate. PLoS One 12:e0178202. https://doi.org/10.1371/journal.pone.0178202.g008

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dey R, Kar S, Joshi S, Maiti TK, Chakraborty S (2015) Ultra-low-cost ‘paper-and-pencil’ device for electrically controlled micromixing of analytes. Microfluid Nanofluidics 19:375–383. https://doi.org/10.1007/s10404-015-1567-3

    Article  Google Scholar 

  43. Brereton RG (2003) Data analysis for the laboratory and chemical plant, 1st edn. Wiley

  44. Zheng M, Wang Y, Wang C et al (2018) Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta 185:309–315. https://doi.org/10.1016/j.talanta.2018.03.066

    Article  CAS  PubMed  Google Scholar 

  45. Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452. https://doi.org/10.1039/c3cs60479a

    Article  CAS  PubMed  Google Scholar 

  46. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  47. Heal HG (1980) The inorganic heterocyclic chemistry of sulfur, nitrogen, and phosphorus. AcademicPress, London

    Google Scholar 

Download references

Funding

This study is financially supported by the Research Councils of Baqiyatallah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bagheri.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, M.M., Nguyen, T.A., Arduini, F. et al. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Microchim Acta 187, 621 (2020). https://doi.org/10.1007/s00604-020-04596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04596-x

Keywords

Navigation