Skip to main content
Log in

Designing of CuS growing on Bi2WO6 nanosheet heterostructures based on a photoelectrochemical aptasensor for detecting ofloxacin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Bi2WO6 (BW) was compounded with different contents of copper sulfide (CuS) by a two-step procedure. The chemical composition and morphology of the materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results of photoelectrochemical (PEC) tests showed that CuS can improve the PEC performance of semiconductor materials and it has the best performance when the CuS mass fraction is 5%. Therefore, CuS/BW-5% nanocomposite has been constructed as ofloxacin (OFL) drug PEC aptasensors by binding of aptamer receptors. The PEC aptasensor based on CuS/BW-5% has a linear relationship for OFL of 1–12,000 nM and a determination limit of 0.35 nM. Since the photoelectron potential generated by CuS/BW-5% heterojunction reduces the combination of photogenerated electrons and holes CuS/BW-5% has a better photoelectrocatalytic performance.

Schematic presentation of a photoelectrochemical aptasensor based on CuS/Bi2WO6 for the determination of OFL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin CC, Lin HY, Hsu LJ (2016) Degradation of ofloxacin using UV/H2O2 process in a large photoreactor. Sep Purif Technol 168:57–61

    Article  CAS  Google Scholar 

  2. Attimarad MV, Alnajjar AO (2013) A conventional HPLC-MS method for the simultaneous determination of ofloxacin and cefixime in plasma: development and validation. J Basic Clin Pharm 4:36–41

    Article  CAS  Google Scholar 

  3. Plotas P, Anastasopoulos C, Makri OE, Leotsinidis M, Georgakopoulos CD (2014) A UPLC–MS method for the determination of ofloxacin concentrations in aqueous humor. Anal Chem Insights 9:27–32

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma S, Sharma MC, Sahu NK (2017) Simultaneous determination of nitazoxanide and ofloxacin in pharmaceutical preparations using UV-spectrophotometric and high performance thin layer chromatography methods. Arab J Chem 10:S62–S66

    Article  CAS  Google Scholar 

  5. Sun WY, Liu WY, Qu LB (2007) Development of ELISA and immunochromatographic assay for ofloxacin. Chin Chem Lett 18:1107–1110

    Article  CAS  Google Scholar 

  6. Zhang BT, Lu LL, Huang F, Lin Z (2015) [Ru(bpy)3]2+−mediated photoelectrochemical detection of bisphenol a on a molecularly imprinted polypyrrole modified SnO2 electrode. Anal Chim Acta 887:59–66

    Article  CAS  Google Scholar 

  7. Qin XF, Geng LP, Wang QQ, Wang Y (2019) Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles. Microchim Acta 186:430

    Article  Google Scholar 

  8. Adhikari S, Kim DH (2018) Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem Eng J 354:692–705

    Article  CAS  Google Scholar 

  9. Jin W, Wu G, Chen A (2014) Sensitive and selective electrochemical detection of chromium (VI) based on gold nanoparticle decorated titania nanotube arrays. Analyst 139:235–241

    Article  CAS  Google Scholar 

  10. Zhang B, Meng HY, Wang X (2018) Fe3+ doped ZnO-Ag photocatalyst for photoelectrochemical sensing platform of ultrasensitive Hg2+ detection using exonuclease III-assisted target recycling and DNA zyme-catalyzed amplification. Sensors Actuators B Chem 255:2531–2537

    Article  CAS  Google Scholar 

  11. Zhao WW, Xu JJ, Chen HY (2014) Photoelectrochemical DNA biosensors. Chem Rev 114(15):7421–7441

    Article  CAS  Google Scholar 

  12. Liu Y, Zhang MY, Li L (2014) One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X = Mo, W) nanosheets. Appl Catal B Environ 160–161:757–766

    Article  Google Scholar 

  13. Stelo F, Kublik N, Ullah S (2020) Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants. J Alloys Compd 829:154591

    Article  CAS  Google Scholar 

  14. Hou X, Shi TL, Wei CH (2020) A 2D-2D heterojunction Bi2WO6/WS2-x as a broad-spectrum bactericide: sulfur vacancies mediate the interface interactions between biology and nanomaterials. Biomaterials 243:119937

  15. Liu YQ, Zhou Y, Tang QJ (2020) A direct Z-scheme Bi2WO6/NH2-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal. RSC Adv 10:1757–1768

    Article  CAS  Google Scholar 

  16. Tang X, Guo XL, Chen ZT (2020) Facile preparation of Cu2O nanoparticles/Bi2WO6/rGO hybrid with enhanced photoelectrochemical performance. Appl Surf Sci 510:145447

    Article  CAS  Google Scholar 

  17. Liu Y, Wei B, Xu LL (2015) Generation of oxygen vacancy and OH radicals: a comparative study of Bi2WO6 and Bi2WO6−x Nanoplates. ChemCatChem 7(24):4076–4084

    Article  CAS  Google Scholar 

  18. Dumrongrojthanath P, Thongtem T, Phuruangrat A (2015) Glycolthermal synthesis of Bi2MoO6 nanoplates and their photocatalytic performance. Mater Lett 154:180–183

    Article  CAS  Google Scholar 

  19. Huang HW, Zhou C, Jiao XC (2020) Subsurface defect engineering in single-unit-cell Bi2WO6 monolayers boosts solar-driven photocatalytic performance. ACS Catal 10:1439–1443

    Article  CAS  Google Scholar 

  20. Ruan XW, Hu H, Che GB (2020) Fabrication of Z-scheme γ-Bi2MoO6/Bi12GeO20 heterostructure for visible-light-driven photocatalytic degradation of organic pollutants. Appl Surf Sci 499:143668

    Article  CAS  Google Scholar 

  21. Voronkova VI, Kharitonova EP, Rudnitskaya OG (2009) Refinement of Bi2WO6 and Bi2MoO6 polymorphism. J Alloys Compd 487(1–2):274–279

    Article  CAS  Google Scholar 

  22. Ding HY, Han DL, Han YJ (2020) Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization. J Hazard Mater 393:122423

    Article  CAS  Google Scholar 

  23. Bano Z, Saeed RMY, Zhu S (2020) Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr(VI) and organic pollutants. Chemosphere 246:125846

    Article  CAS  Google Scholar 

  24. Lai C, Zhang MM, Li BS (2019) Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight. Chem Eng J 358:891–902

    Article  CAS  Google Scholar 

  25. Guo L, Zhang K, Han X, Zhao Q, Wang D, Fu F (2019) 2D in-plane CuS/Bi2WO6 p-n heterostructures with promoted visible-light-driven photo-Fenton degradation performance. Nanomaterials 9:1151

    Article  CAS  Google Scholar 

  26. Zhang YQ, Li S, Zhang BP (2016) Controllable synthesis of Bi2S3/CuS heterostructures by an in situ ion-exchange solvothermal process and their enhanced photocatalytic performance. RSC Adv 6:103215–103223

    Article  CAS  Google Scholar 

  27. Li MY, Huang YL, Wang SQ (2019) Visible light driven photoelectrochemical sensor for chromium(VI) BiOI microspheres decorated with metallic bismuth. Microchim Acta 186:345

    Article  Google Scholar 

  28. Yan PC, Jiang DS, Li HN (2018) Exploitation of a photoelectrochemical sensing platform for catechol quantitative determination using BiPO4 nanocrystals/BiOI heterojunction. Anal Chim Acta 1042:11–19

    Article  CAS  Google Scholar 

  29. Kumar A, Sharm SK, Sharma G (2019) Wide spectral degradation of norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: elucidating the photocatalytic mechanism under different light sources. J Hazard Mater 364(15):429–440

    Article  CAS  Google Scholar 

  30. Jiang D, Du XJ, Zhou L, Li HN, Wang K (2018) TiO2 nanoparticles embedded in borocarbonitrides nanosheets for sensitive and selective photoelectrochemical aptasensing of bisphenol a. J Electroanal Chem 818:191–197

    Article  CAS  Google Scholar 

  31. Qiao YF, Li J, Li HB, Fang HL, Fan DH, Wang W (2016) A label-free photoelectrochemical aptasensor for bisphenol a based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens Bioelectron 86:315–320

    Article  CAS  Google Scholar 

  32. Si XJ, Wei YL, Wang CL, Li L, Ding YP (2018) A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film. Anal Methods 10:1961–1967

    Article  CAS  Google Scholar 

  33. Yang C, Zhang S, Liu Y, Huang W (2008) Electrochemical behaviors of ofloxacin and its voltammetric determination at carbon nanotubes film modified electrode. Front Chem China 3:353–358

    Article  Google Scholar 

  34. Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Vlierberghe SV, Strehlitz B, Wael KD (2017) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors Actuators B Chem 240:1024–1035

    Article  CAS  Google Scholar 

  35. Zhou XT, Wang LM, Shen GQ, Zhang DW, Xie JL, Mamut A, Huang WW, Zhou SS (2018) Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim Acta 185:355

    Article  Google Scholar 

  36. Kuo WS, Ho PH (2006) Solar photocatalytic decolorization of dyes in solution with TiO2 film. Dyes Pigments 71:212–217

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the financial support from the project supported by the Hubei Provincial Science and Technology Department for the general project (NO.2019CFB450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajie Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 380 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Cheng, Y., Fei, X. et al. Designing of CuS growing on Bi2WO6 nanosheet heterostructures based on a photoelectrochemical aptasensor for detecting ofloxacin. Microchim Acta 187, 583 (2020). https://doi.org/10.1007/s00604-020-04516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04516-z

Keywords

Navigation