Skip to main content
Log in

Preparation and application of novel MIL-101(Cr) composite in liquid chromatographic separation of aromatic compounds: experimental and computational insights

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel composite material of SiO2@dSiO2@MIL-101(Cr) was synthesized via SiO2@dSiO2 as the core and MIL-101(Cr) as the shell to separate aromatic compounds. The laboratory prepared column gave rise to the baseline separation of xylene, dichlorobenzene isomers, phthalate esters, nitrobenzene, and acetophenone with high column efficiency (e.g., 109,050 plates m−1 for methyl phthalate) and good precision (e.g., 0.02–0.05%, 0.24–0.34%, 0.14–0.18%, and 0.11–0.13% corresponding to the relative standard deviation of retention time, peak area, peak height, and half peak width for xylene isomers, respectively). The calculation of thermodynamic parameters demonstrated that the separation of o-xylene, nitrobenzene, acetophenone, and p-dichlorobenzene was controlled by positive ∆H and ∆S. Although the separation of aromatic compounds by a MOF packed column has been reported in many studies, the knowledge regarding their separation mechanism at atomic level is still very limited. In this study, we integrate fully atomistic molecular dynamics simulation and binding free energy calculation to investigate the separation mechanism of aromatic compounds by MIL-101(Cr). The investigation provides a base for separation of more and other compounds in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed A, Forster M, Jin J, Myers P, Zhang H (2015) Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation. Acs Appl Mater Inter 7(32):18054–18063

    Article  CAS  Google Scholar 

  2. Qu Q, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Xu Q (2017) Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. J Chromatogr A 1505:63–68

    Article  CAS  Google Scholar 

  3. Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H-Q (2017) A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Microchim Acta 184(10):4099–4106

    Article  CAS  Google Scholar 

  4. Yang S, Ye F, Lv Q, Zhang C, Shen S, Zhao S (2014) Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J Chromatogr A 1360:143–149

    Article  CAS  Google Scholar 

  5. Alaerts L, Kirschhock CEA, Maes M, van der Veen MA, Finsy V, Depla A, Martens JA, Baron GV, Jacobs PA, Denayer JFM, De Vos DE (2007) Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew Chem 119(23):4371–4375

    Article  Google Scholar 

  6. Yan Z, Zhang W, Gao J, Lin Y, Li J, Lin Z, Zhang L (2015) Reverse-phase high performance liquid chromatography separation of positional isomers on a MIL-53(Fe) packed column. RSC Adv 5(50):40094–40102

    Article  CAS  Google Scholar 

  7. Yang CX, Liu SS, Wang HF, Wang SW, Yan XP (2012) High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. Analyst 137(1):133–139

    Article  CAS  Google Scholar 

  8. Li S, Peng B, Wang S (2019) Establishment of adsorption isotherms of m- and p-cresols in chromatographic process with aluminum terephthalate metal-organic framework as stationary phase. J Chromatogr A 460599–460599

  9. Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock C, Denayer J, De Vos D (2010) Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms. J Am Chem Soc 132(43):15277–15285

    Article  CAS  Google Scholar 

  10. Fu YY, Yang CX, Yan XP (2013) Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography. J Chromatogr A 1274(1):137–144

    Article  CAS  Google Scholar 

  11. Xu Y, Xu L, Qi S, Dong Y, Rahman ZU, Chen H, Chen X (2013) In situ synthesis of MIL-100(Fe) in the capillary column for capillary electrochromatographic separation of small organic molecules. Anal Chem 85(23):11369–11375

    Article  CAS  Google Scholar 

  12. Kim PJ, You YW, Park H, Chang JS, Bae YS, Lee CH, Suh JK (2015) Separation of SF6 from SF6/N-2 mixture using metal-organic framework MIL-100(Fe) granule. Chem Eng J 262:683–690

    Article  CAS  Google Scholar 

  13. Yang F, Yang CX, Yan XP (2015) Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols. Talanta 137:136–142

    Article  CAS  Google Scholar 

  14. Yang CX, Chen YJ, Wang HF, Yan XP (2011) High-performance separation of fullerenes on metal-organic framework MIL-101(Cr). Chemistry 17(42):11734–11737

    Article  CAS  Google Scholar 

  15. Yan ZM, Zheng JN, Chen JF, Tong P, Lu MH, Lin Z, Zhang L (2014) Preparation and evaluation of silica-UiO-66 composite as liquid chromatographic stationary phase for fast and efficient separation. J Chromatogr A 1366:45–53

    Article  CAS  Google Scholar 

  16. Arrua RD, Peristyy A, Nesterenko PN, Das A, D’Alessandro DM, Hilder EF (2017) UiO-66@SiO2 core-shell microparticles as stationary phases for the separation of small organic molecules. Analyst 142(3):517–524

    Article  CAS  Google Scholar 

  17. Ehrling S, Kutzscher C, Freund P, Muller P, Senkovska I, Kaskel S (2018) MOF@SiO2 core-shell composites as stationary phase in high performance liquid chromatography. Microporous Mesoporous Mater 263:268–274

    Article  CAS  Google Scholar 

  18. Qin WW, Silvestre ME, Franzreb M (2014) Magnetic microparticles@UiO-67 core-shell composites as a novel stationary phase for high performance liquid chromatography. Appl Mech Mater 703:73–76

    Article  Google Scholar 

  19. Chen S, Li XX, Feng F, Li S, Han JH, Jia ZY, Shu L, Somsundaran P, Li JR (2018) Highly efficient high-performance liquid chromatographic separation of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column. J Sep Sci 41(12):2528–2535

    Article  CAS  Google Scholar 

  20. Yang CX, Yan XP (2011) Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal Chem 83(18):7144–7150

    Article  CAS  Google Scholar 

  21. Quan X, Sun Z, Meng H, Han Y, Wu J, Xu J, Xu Y, Zhang X (2019) Surface functionalization of MIL-101(Cr) by aminated mesoporous silica and improved adsorption selectivity toward special metal ions. Dalton Trans 48(16):5384–5396

    Article  CAS  Google Scholar 

  22. Qu Q, Min Y, Zhang L, Xu Q, Yin Y (2015) Silica microspheres with fibrous shells: synthesis and application in HPLC. Anal Chem 87(19):9631–9638

    Article  CAS  Google Scholar 

  23. Liu XY, Wang LH, Zheng Z, Kang ML, Li C, Liu CL (2013) Molecular dynamics simulation of the diffusion of uranium species in clay pores. J Hazard Mater 244-245:21–28

    Article  CAS  Google Scholar 

  24. Sun MC, Zhang XY, Gao ZS, Liu T, Luo C, Zhao YS, Liu Y, He ZG, Wang J, Sun J (2019) Probing a dipeptide-based supramolecular assembly as an efficient camptothecin delivering carrier for cancer therapy: computational simulations and experimental validations. Nanoscale 11(9):3864–3876

    Article  CAS  Google Scholar 

  25. He X, Yang W, Li S, Liu Y, Hu B, Wang T, Hou XH (2018) An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD. Microchim Acta 185(2):125–125

    Article  Google Scholar 

  26. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Xiaohong Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Shao, Y., Hu, B. et al. Preparation and application of novel MIL-101(Cr) composite in liquid chromatographic separation of aromatic compounds: experimental and computational insights. Microchim Acta 187, 471 (2020). https://doi.org/10.1007/s00604-020-04458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04458-6

Keywords

Navigation