Skip to main content
Log in

An enhanced photoelectrochemical sensor for aflatoxin B1 detection based on organic-inorganic heterojunction nanomaterial: poly(5-formylindole)/NiO

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new strategy for enhancing the photoelectric activity of poly(5-formylindole) (P5FIn) was developed by introducing the inorganic semiconductor material (NiO) to form organic-inorganic heterojunctions. P5FIn/NiO heterojunctions were firstly prepared by combining hydrothermal synthesis and electrochemical polymerization. Due to the synergistic effect between P5FIn and NiO, the photoelectrochemical (PEC) performance of this heterojunction was significantly enhanced compared to pure P5FIn and NiO. The reason for the enhanced PEC performance is mainly attributed to the increased visible light utilization and the bandgap matching effect of the P5FIn/NiO heterojunctions. Based on the prepared P5FIn/NiO heterojunctions, a novel PEC sensor for aflatoxin B1 (AFB1) detection was also constructed with a wide linear range of 0.005–50 ng mL−1 and a limit of detection (LOD) of 0.0015 ng mL−1. Moreover, this constructed PEC sensor also had good stability, reproducibility, selectivity, and satisfactory actual sample detection ability. This strategy may inspire more design and application of high-performance photoelectric active material based on inorganic semiconductor and organic conducting polymer heterojunctions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Song Z, Fan G-C, Li Z, Gao F, Luo X (2018) Universal design of selectivity-enhanced photoelectrochemical enzyme sensor: integrating photoanode with biocathode. Anal Chem 90(18):10681–10687

    Article  CAS  Google Scholar 

  2. Lv S, Li Y, Zhang K, Lin Z, Tang D (2017) Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters. ACS Appl Mater Inter 9(44):38336–38343

    Article  CAS  Google Scholar 

  3. Zheng Y-N, Liang W-B, Xiong C-Y, Zhuo Y, Chai Y-Q, Yuan R (2017) Universal ratiometric photoelectrochemical bioassay with target-nucleotide transduction-amplification and electron-transfer tunneling distance regulation strategies for ultrasensitive determination of microRNA in cells. Anal Chem 89(17):9445–9451

    Article  CAS  Google Scholar 

  4. Wang G-L, Yuan F, Gu T, Dong Y, Wang Q, Zhao W-W (2018) Enzyme-initiated quinone-chitosan conjugation chemistry: toward a general in situ strategy for high-throughput photoelectrochemical enzymatic bioanalysis. Anal Chem 90(3):1492–1497

    Article  CAS  Google Scholar 

  5. Wang Y, Wang P, Wu Y, Di J (2018) A cathodic “signal-on” photoelectrochemical sensor for Hg2+ detection based on ion-exchange with ZnS quantum dots. Sensor Actuat B-Chem 254:910–915

    Article  CAS  Google Scholar 

  6. Liu S, He P, Hussain S, Lu H, Zhou X, Lv F, Liu L, Dai Z, Wang S (2018) Conjugated polymer-based photoelectrochemical cytosensor with turn-on enable signal for sensitive cell detection. ACS Appl Mater Interfaces 10(7):6618–6623

    Article  CAS  Google Scholar 

  7. Zhao W-W, Xu J-J, Chen H-Y (2018) Photoelectrochemical immunoassays. Anal Chem 90(1):615–627

    Article  CAS  Google Scholar 

  8. Ibrahim I, Lim HN, Zawawi RM, Tajudin AA, Ng YH, Guo H, Huang NM (2018) A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. J Mater Chem B 6(28):4551–4568

    Article  CAS  Google Scholar 

  9. Peng J, Huang Q, Zhuge W, Liu Y, Zhang C, Yang W, Xiang G (2018) Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosens Bioelectron 106:212–218

    Article  CAS  Google Scholar 

  10. Wang H, Yin H, Huang H, Li K, Zhou Y, Waterhouse GI, Lin H, Ai S (2018) Dual-signal amplified photoelectrochemical biosensor for detection of N6-methyladenosine based on BiVO4-110-TiO2 heterojunction, Ag+-mediated cytosine pairs. Biosens Bioelectron 108:89–96

    Article  CAS  Google Scholar 

  11. Dai W-X, Zhang L, Zhao W-W, Yu X-D, Xu J-J, Chen H-Y (2017) Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal Chem 89(15):8070–8078

    Article  CAS  Google Scholar 

  12. Otep S, Michinobu T, Zhang Q (2019) Pure organic semiconductor-based photoelectrodes for water splitting. Solar RRL:1900395

  13. Gu P, Wang Z, Xiao F, Lin Z, Song R, Xu Q, Lu J, Liu B, Zhang Q (2017) An ambipolar azaacene as a stable photocathode for metal-free light-driven water reduction. Mater Chem Front 1(3):495–498

    Article  CAS  Google Scholar 

  14. Nie G, Tang Y, Zhang B, Wang Y, Guo Q (2018) Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly (5-formylindole) nanocomposite. Biosens Bioelectron 116:60–66

    Article  CAS  Google Scholar 

  15. Zhang L, Ruan Y-F, Liang Y-Y, Zhao W-W, Yu X-D, Xu J-J, Chen H-Y (2018) Bismuth oxyiodide couples with glucose oxidase: a special synergized dual-catalysis mechanism for photoelectrochemical enzymatic bioanalysis. ACS Appl Mater Inter 10(4):3372–3379

    Article  CAS  Google Scholar 

  16. Zhu J, Huo X, Liu X, Ju H (2016) Gold nanoparticles deposited polyaniline-TiO2 nanotube for surface plasmon resonance enhanced photoelectrochemical biosensing. ACS Appl Mater Interfaces 8(1):341–349

    Article  CAS  Google Scholar 

  17. Feng J, Li Y, Gao Z, Lv H, Zhang X, Dong Y, Wang P, Fan D, Wei Q (2018) A competitive-type photoelectrochemical immunosensor for aflatoxin B1 detection based on flower-like WO3 as matrix and Ag2S-enhanced BiVO4 for signal amplification. Sensor Actuat B-Chem 270:104–111

    Article  CAS  Google Scholar 

  18. Wang C, Qian J, An K, Ren C, Lu X, Hao N, Liu Q, Li H, Huang X, Wang K (2018) Fabrication of magnetically assembled aptasensing device for label-free determination of aflatoxin B1 based on EIS. Biosens Bioelectron 108:69–75

    Article  Google Scholar 

  19. Nie G, Wang Y, Tang Y, Zhao D, Guo Q (2018) A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly (5-formylindole)/reduced graphene oxide nanocomposite. Biosens Bioelectron 101:123–128

    Article  CAS  Google Scholar 

  20. Li R, Zhang Y, Tu W, Dai Z (2017) Photoelectrochemical bioanalysis platform for cells monitoring based on dual signal amplification using in situ generation of electron acceptor coupled with heterojunction. ACS Appl Mater Interfaces 9(27):22289–22297

    Article  CAS  Google Scholar 

  21. Xing W, Li F, Yan Z, Lu G (2014) Synthesis and electrochemical properties of mesoporous nickel oxide. J Power Sources 134(2):324–330

    Article  Google Scholar 

  22. Nie G, Zhou L, Yang H (2011) Electrosynthesis of a new polyindole derivative obtained from 5-formylindole and its electrochromic properties. J Mater Chem 21(36):13873–13880

    Article  CAS  Google Scholar 

  23. Raj R, Ragupathy P, Mohan S (2015) Remarkable capacitive behavior of a Co3O4-polyindole composite as electrode material for supercapacitor applications. J Mater Chem A 3:24338–24348

    Article  CAS  Google Scholar 

  24. Jayababu N, Poloju M, Shruthi J, Reddy MVR (2019) Synthesis of ZnO/NiO nanocomposites for the rapid detection of ammonia at room temperature. Mat Sci Semicon Proc 102:104591

    Article  CAS  Google Scholar 

  25. Lin Y, Zhou Q, Tang D, Niessner R, Knopp D (2017) Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal Chem 89(10):5637–5645

    Article  CAS  Google Scholar 

  26. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Emrani AS, Zolfaghari R, Taghdisi SM (2017) A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1. Biosens Bioelectron 94:374–379

    Article  CAS  Google Scholar 

  27. Krittayavathananon A, Sawangphruk M (2017) Impedimetric sensor of ss-HSDNA/reduced graphene oxide aerogel electrode toward aflatoxin B1 detection: effects of redox mediator charges and hydrodynamic diffusion. Anal Chem 89(24):13283–13289

    Article  CAS  Google Scholar 

  28. Zhang B, Lu Y, Yang C, Guo Q, Nie G (2019) Simple “signal-on” photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly (5-formylindole)/Au nanocomposites. Biosens Bioelectron 134:42–48

    Article  CAS  Google Scholar 

  29. Goud KY, Catanante G, Hayat A, Satyanarayana M, Gobi KV, Marty JL (2016) Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sensor Actuat B-Chem 235:466–473

    Article  Google Scholar 

  30. Shim WB, Mun H, Joung HA, Ofori JA, Chung DH, Kim MG (2014) Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36(1):30–35

    Article  CAS  Google Scholar 

  31. Wang Y, Zhao G, Li X, Liu L, Cao W, Wei Q (2018) Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru (bpy)32+ fixed in 3D cu/Ni oxalate for the detection of aflatoxin B1. Biosens Bioelectron 101:290–296

    Article  CAS  Google Scholar 

  32. Liu Y, Yan T, Li Y, Cao W, Pang X, Wu D, Wei Q (2015) A simple label-free photoelectrochemical immunosensor for highly sensitive detection of aflatoxin B1 based on CdS-Fe3O4 magnetic nanocomposites. RSC Adv 5(25):19581–19586

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51973102), Natural Science Foundation of Shandong (ZR2019MB067), and Talent Fund of QUST (2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Yang or Guangming Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, B., Tian, Y. et al. An enhanced photoelectrochemical sensor for aflatoxin B1 detection based on organic-inorganic heterojunction nanomaterial: poly(5-formylindole)/NiO. Microchim Acta 187, 467 (2020). https://doi.org/10.1007/s00604-020-04439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04439-9

Keywords

Navigation