Skip to main content
Log in

Determination of nereistoxin-related insecticide via quantum-dots-doped covalent organic frameworks in a molecularly imprinted network

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Quantum-dots-doped covalent organic frameworks in a molecularly imprinted network (QDs-doped COFs@MIP) were developed for detection of nereistoxin (NRT)-related insecticide in tap water. The preparation of QDs-doped COFs@MIP was easy to accomplish via one-pot synthesis at room temperature. QDs-doped COFs@MIP quenched by targeting thiosultap due to the photoinduced charge transfer. A Brunauer–Emmett–Teller surface area of 186.20 m2 g−1 and a maximum adsorption capacity of 771 mg g−1 of the QDs-doped COFs@MIP exhibited good selectivity and adsorption capacity. Direct fluorescence determination was established over the range 5–100 μg L−1 (R2 = 0.9959) with a detection limit of 1.60 μg L−1. Furthermore, 86.5–106.5% recoveries of spiked tap water were achieved. The determination system was feasible for tracing the NRT-related insecticide with high accuracy and good repeatability and reproducibility.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu W, Zhang D, Zhu W, Zhang S, Wang Y, Yu S, Liu T, Zhang X, Zhang W, Wang J (2015) Colorimetric and visual determination of total nereistoxin-related insecticides by exploiting a nereistoxin-driven aggregation of gold nanoparticles. Microchim Acta 182(1):401–408. https://doi.org/10.1007/s00604-014-1347-x

    Article  CAS  Google Scholar 

  2. Kurisaki E, Kato N, Ishida T, Matsumoto A, Shinohara K, Hiraiwa K (2010) Fatal human poisoning with PadanTM: a cartap-containing pesticide. Clin Toxicol 48(2):153–155. https://doi.org/10.3109/15563650903505166

    Article  CAS  Google Scholar 

  3. Takahashi F, Yamamoto N, Todoriki M, Jin J (2018) Sonochemical preparation of gold nanoparticles for sensitive colorimetric determination of nereistoxin insecticides in environmental samples. Talanta 188:651–657. https://doi.org/10.1016/j.talanta.2018.06.042

    Article  CAS  Google Scholar 

  4. Ferrer C, Mezcua M, Martínez-Uroz MA, Pareja L, Lozano A, Fernández-Alba AR (2010) Method development and validation for determination of thiosultap sodium, thiocyclam, and nereistoxin in pepper matrix. Anal Bioanal Chem 398(5):2299–2306. https://doi.org/10.1007/s00216-010-4100-2

    Article  CAS  Google Scholar 

  5. Wang Z, Wu L, Shen B, Jiang Z (2013) Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles. Talanta 114:124–130. https://doi.org/10.1016/j.talanta.2013.02.069

    Article  CAS  Google Scholar 

  6. Park Y, Choe S, Lee H, Jo J, Park Y, Kim E, Pyo J, Jung JH (2015) Advanced analytical method of nereistoxin using mixed-mode cationic exchange solid-phase extraction and GC/MS. Forensic Sci Int 252:143–149. https://doi.org/10.1016/j.forsciint.2015.04.010

    Article  CAS  Google Scholar 

  7. Tao CJ, Hu JY, Li JZ (2007) Determination of insecticide monosultap residues in tomato and soil by capillary gas chromatography with flame photometric detection. Can J Anal Sci Spectrosc 52(5):295–304

    CAS  Google Scholar 

  8. Xie S, Yuan W, Wang P, Tang Y, Teng L, Peng Q (2019) Target-induced conformational switch of DNAzyme for homogeneous electrochemical detection of nereistoxin-related insecticide on an ultramicroelectrode. Sensors Actuators B Chem 292:64–69. https://doi.org/10.1016/j.snb.2019.04.095

    Article  CAS  Google Scholar 

  9. Durán-Toro V, Gran-Scheuch A, Órdenes-Aenishanslins N, Monrás JP, Saona LA, Venegas FA, Chasteen TG, Bravo D, Pérez-Donoso JM (2014) Quantum dot-based assay for Cu2+ quantification in bacterial cell culture. Anal Biochem 450:30–36. https://doi.org/10.1016/j.ab.2014.01.001

    Article  CAS  Google Scholar 

  10. Chang L, He X, Chen L, Zhang Y (2017) Mercaptophenylboronic acid-capped Mn-doped ZnS quantum dots for highly selective and sensitive fluorescence detection of glycoproteins. Sensors Actuators B Chem 243:72–77. https://doi.org/10.1016/j.snb.2016.11.121

    Article  CAS  Google Scholar 

  11. Gómez-Arribas LN, Urraca JL, Benito-Peña E, Moreno-Bondi MC (2019) Tag-specific affinity purification of recombinant proteins by using molecularly imprinted polymers. Anal Chem 91(6):4100–4106. https://doi.org/10.1021/acs.analchem.8b05731

    Article  CAS  Google Scholar 

  12. Guo J, Yu M, Wei X, Huang L (2018) Preparation of core–shell magnetic molecularly imprinted polymer with uniform thin polymer layer for adsorption of dichlorophen. J Chem Eng Data 63(8):3068–3073. https://doi.org/10.1021/acs.jced.8b00321

    Article  CAS  Google Scholar 

  13. Ren X, Chen L (2015) Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron 64:182–188. https://doi.org/10.1016/j.bios.2014.08.086

    Article  CAS  Google Scholar 

  14. Luo SQ, Miao YM, Guo JP, Sun XJ, Yan GQ (2019) Phosphorimetric determination of 4-nitrophenol using mesoporous molecular imprinting polymers containing manganese(II)-doped ZnS quantum dots. Microchim Acta 186(4):249. https://doi.org/10.1007/s00604-019-3362-4

    Article  CAS  Google Scholar 

  15. Chen SJ, Li YZ, Wu SW, Jiang XL, Yang H, Su X, He L, Zou LK, Ao XL, Liu SL, Yang Y (2020) A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn:ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 187(1):10. https://doi.org/10.1007/s00604-019-4038-9

    Article  CAS  Google Scholar 

  16. Zhang D, Wang Y, Xie J, Geng W, Liu H (2020) Ionic-liquid-stabilized fluorescent probe based on S-doped carbon dot-embedded covalent-organic frameworks for determination of histamine. Microchim Acta 187:28. https://doi.org/10.1007/s00604-019-3833-7

    Article  CAS  Google Scholar 

  17. Ni T, Zhang D, Wang J, Wang S, Liu H, Sun B (2018) Grafting of quantum dots on covalent organic frameworks via a reverse microemulsion for highly selective and sensitive protein optosensing. Sensors Actuators B 269:340–345. https://doi.org/10.1016/j.snb.2018.04.172

    Article  CAS  Google Scholar 

  18. Liu H, Zhang Y, Zhang D, Zheng F, Huang M, Sun J, Sun X, Li H, Wang J, Sun B (2019) A fluorescent nanoprobe for 4-ethylguaiacol based on the use of a molecularly imprinted polymer doped with a covalent organic framework grafted onto carbon nanodots. Microchim Acta 186(3):182. https://doi.org/10.1007/s00604-019-3306-z

    Article  CAS  Google Scholar 

  19. Zhang D, Liu H, Geng W, Wang Y (2019) A dual-function molecularly imprinted optopolymer based on quantum dots grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chem 277:639–645. https://doi.org/10.1016/j.foodchem.2018.10.147

    Article  CAS  PubMed Central  Google Scholar 

  20. Côté AP, Benin AI, Ockwig NW, Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170. https://doi.org/10.1126/science.1120411

    Article  CAS  Google Scholar 

  21. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38(4):762–785. https://doi.org/10.1021/ja02261a002

    Article  CAS  Google Scholar 

  22. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) Synthesis of water-soluble ZnS : Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer. J Mater Chem 13(7):1853–1857. https://doi.org/10.1039/B303287F

    Article  CAS  Google Scholar 

  23. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134(48):19524–19527. https://doi.org/10.1021/ja308278w

    Article  CAS  Google Scholar 

  24. Liu W, Zhang D, Tang Y, Wang Y, Yan F, Li Z, Wang J, Zhou HS (2012) Highly sensitive and selective colorimetric detection of cartap residue in agricultural products. Talanta 101:382–387. https://doi.org/10.1016/j.talanta.2012.09.045

    Article  CAS  Google Scholar 

  25. Shimada H, Noguchi S, Yamamoto M, Nishiyama K, Kitamura Y, Ihara T (2017) Electrochemical sensing of neurotoxic agents based on their electron transfer promotion effect on an Au electrode. Anal Chem 89(11):5742–5747. https://doi.org/10.1021/acs.analchem.6b04229

    Article  CAS  Google Scholar 

  26. Dai J, Chen H, Gao G, Zhu L, Chai Y, Liu X (2019) Simultaneous determination of cartap and its metabolite in tea using hydrophilic interaction chromatography tandem mass spectrometry and the combination of dispersive solid phase extraction and solid phase extraction. J Chromatogr A 1600:148–157. https://doi.org/10.1016/j.chroma.2019.04.034

    Article  CAS  Google Scholar 

  27. Wu M, Deng H, Fan Y, Hu Y, Guo Y, Xie L (2018) Rapid colorimetric detection of cartap residues by AgNP sensor with magnetic molecularly imprinted microspheres as recognition elements. Molecules 23(6). https://doi.org/10.3390/molecules23061443

  28. Yang Y, Hou J, Huo D, Wang X, Li J, Xu G, Bian M, He Q, Hou C, Yang M (2019) Green emitting carbon dots for sensitive fluorometric determination of cartap based on its aggregation effect on gold nanoparticles. Microchim Acta 186(4):259. https://doi.org/10.1007/s00604-019-3361-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2018YFC1602300), the National Natural Science Foundation of China (No. 31822040), the Young Top-Notch Talent of High-Level Innovation and Entrepreneurs Support Program (No. 2017000026833ZK28), and School Level Cultivation Fund of Beijing Technology and Business University for Distinguished and Excellent Young Scholars (BTBUYP2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yuan, X., Jiang, W. et al. Determination of nereistoxin-related insecticide via quantum-dots-doped covalent organic frameworks in a molecularly imprinted network. Microchim Acta 187, 464 (2020). https://doi.org/10.1007/s00604-020-04435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04435-z

Keywords

Navigation