Skip to main content
Log in

A vinyl sulfone clicked carbon dot-engineered microfluidic paper-based analytical device for fluorometric determination of biothiols

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A microfluidic paper-based analytical device integrating carbon dot (CDs) is fabricated and used for a fluorometric off-on assay of biothiols. Vinyl sulfone (VS) click immobilization of carbon dots (CDs) on paper was accomplished by a one-pot simplified protocol that uses divinyl sulfone (DVS) as a homobifunctional reagent. This reagent mediated both the click oxa-Michael addition to the hydroxyl groups of cellulose and ulterior covalent grafting of the resulting VS paper to NH2-functionalized CDs by means of click aza-Michael addition. The resulting cellulose nanocomposite was used to engineer an inexpensive and robust microfluidic paper-based analytical device (μPAD) that is used for a reaction-based off-on fluorometric assay of biothiols (GSH, Cys, and Hcy). The intrinsic blue fluorescence of CDs (with excitation/emission maxima at 365/450 nm) is turned off via the heavy atom effect of an introduced iodo group. Fluorescence is turned on again due to the displacement of iodine by reaction with a biothiol. The increase in fluorescence is related to the concentration over a wide range (1 to 200 μM for GSH and 5–200 μM for Cys and Hcy, respectively), and the assay exhibits a low detection limit (0.3 μM for GSH and Cys and 0.4 μM for Hcy). The method allows for rapid screening and can also be used in combination with a digital camera readout.

Schematic representation of a μPAD based on click immobilized carbon dots and used for a reaction-based fluorometric off-on assay of biothiols. The intrinsic blue fluorescence of carbon dots is turned off via the heavy atom effect of an introduced iodo group and turned on by the displacement of this atom by reaction with a biothiol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C (2019) Recent progress in microfluidics-based biosensing. Anal Chem 91(1):388–404. https://doi.org/10.1021/acs.analchem.8b05007

    Article  CAS  PubMed  Google Scholar 

  2. Farré M, Kantiani L, Barceló D (2012) Chapter 7—microfluidic devices: biosensors. In: Picó Y (ed) Chemical analysis of food: techniques and applications. Academic Press, Boston, pp 177–217. https://doi.org/10.1016/B978-0-12-384862-8.00007-8

    Chapter  Google Scholar 

  3. Lopez-Marzo AM, Merkoci A (2016) Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab Chip 16(17):3150–3176. https://doi.org/10.1039/C6LC00737F

    Article  CAS  PubMed  Google Scholar 

  4. Xia Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789. https://doi.org/10.1016/j.bios.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  5. Keshipour S, Maleki A (2019) Modification of cellulose. In: Mondal MIH (ed) Cellulose-based superabsorbent hydrogels. Springer International Publishing, Cham, pp 435–486. https://doi.org/10.1007/978-3-319-77830-3_17

    Chapter  Google Scholar 

  6. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS (2017) Paper-based microfluidic devices: emerging themes and applications. Anal Chem 89(1):71–91. https://doi.org/10.1021/acs.analchem.6b04581

    Article  CAS  PubMed  Google Scholar 

  7. Kosack CS, Page AL, Klatser PR (2017) A guide to aid the selection of diagnostic tests. Bull World Health Organ 95(9):639–645. https://doi.org/10.2471/BLT.16.187468

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu J, Wang L, Wang S, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  CAS  Google Scholar 

  9. Nishat S, Awan FR, Bajwa SZ, Nishat S, Awan FR, Bajwa SZ, Nishat S (2019) Nanoparticle-based point of care immunoassays for in vitro biomedical diagnostics. Anal Sci 35(2):123–131

    Article  CAS  Google Scholar 

  10. Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J (2017) Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale 9(13):4366–4382. https://doi.org/10.1039/C6NR08846E

    Article  CAS  PubMed  Google Scholar 

  11. Fu L-M, Wang Y-N (2018) Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends Anal Chem 107:196–211. https://doi.org/10.1016/j.trac.2018.08.018

    Article  CAS  Google Scholar 

  12. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. https://doi.org/10.1039/C4CS00269E

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Yu S-H (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19(7):382–393. https://doi.org/10.1016/j.mattod.2015.11.008

    Article  CAS  Google Scholar 

  14. Hu S-W, Qiao S, Xu B-Y, Peng X, Xu J-J, Chen H-Y (2017) Dual-functional carbon dots pattern on paper chips for Fe3+ and ferritin analysis in whole blood. Anal Chem 89(3):2131–2137. https://doi.org/10.1021/acs.analchem.6b04891

    Article  CAS  PubMed  Google Scholar 

  15. Liang L, Lan F, Yin X, Ge S, Yu J, Yan M (2017) Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices. Biosens Bioelectron 95:181–188. https://doi.org/10.1016/j.bios.2017.04.027

    Article  CAS  PubMed  Google Scholar 

  16. He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C (2019) Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 7(8):1186–1208. https://doi.org/10.1039/c8tb02671h

    Article  CAS  PubMed  Google Scholar 

  17. Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28(30):11265–11273. https://doi.org/10.1021/la301661x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815

    Article  CAS  Google Scholar 

  19. Junka K, Guo J, Filpponen I, Laine J, Rojas OJ (2014) Modification of cellulose nanofibrils with luminescent carbon dots. Biomacromolecules 15(3):876–881. https://doi.org/10.1021/bm4017176

    Article  CAS  PubMed  Google Scholar 

  20. Guo J, Liu D, Filpponen I, Johansson L-S, Malho J-M, Quraishi S, Liebner F, Santos HA, Rojas OJ (2017) Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bioimaging. Biomacromolecules 18(7):2045–2055. https://doi.org/10.1021/acs.biomac.7b00306

    Article  CAS  PubMed  Google Scholar 

  21. You Y, Zhang H, Liu Y, Lei B (2016) Solid-state fluorescent composite phosphor based on cellulose grafted with carbon dots for temperature sensing. RSC Adv 6(93):90126–90131. https://doi.org/10.1039/C6RA14968E

    Article  CAS  Google Scholar 

  22. Ahmed S, Bui M-PN, Abbas A (2016) Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron 77:249–263

    Article  CAS  Google Scholar 

  23. Xi W, Scott TF, Kloxin CJ, Bowman CN (2014) Click chemistry in materials science. Adv Funct Mater 24(18):2572–2590. https://doi.org/10.1002/adfm.201302847

    Article  CAS  Google Scholar 

  24. Nongbe MC, Bretel G, Ekou L, Ekou T, Robitzer M, Le Grognec E, Felpin F-X (2018) Cellulose paper azide as a molecular platform for versatile click ligations: application to the preparation of hydrophobic paper surface. Cellulose 25(2):1395–1411. https://doi.org/10.1007/s10570-017-1647-5

    Article  CAS  Google Scholar 

  25. Huang J-L, Li C-J, Gray DG (2014) Functionalization of cellulose nanocrystal films via “thiol–ene” click reaction. RSC Adv 4(14):6965–6969. https://doi.org/10.1039/C3RA47041E

    Article  CAS  Google Scholar 

  26. Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubí-Robles M, Fernández B, Ruedas-Rama MJ, Megia-Fernández A, Lapresta-Fernández A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey LF (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49(11):1103–1105. https://doi.org/10.1039/C2CC36450F

    Article  CAS  Google Scholar 

  27. Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M (2018) Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants 7(5):62–83

    Article  CAS  Google Scholar 

  28. Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione—linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164. https://doi.org/10.1016/j.freeradbiomed.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  29. Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M (2015) Glutathione transferases and neurodegenerative diseases. Neurochem Int 82:10–18. https://doi.org/10.1016/j.neuint.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  30. Lee S, Li J, Zhou X, Yin J, Yoon J (2018) Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. Coord Chem Rev 366:29–68. https://doi.org/10.1016/j.ccr.2018.03.021

    Article  CAS  Google Scholar 

  31. Gogoi S, Khan R (2018) NIR upconversion characteristics of carbon dots for selective detection of glutathione. New J Chem 42(8):6399–6407. https://doi.org/10.1039/c8nj00567b

    Article  CAS  Google Scholar 

  32. Yan FY, Ye QH, Xu JX, He JJ, Chen L, Zhou XG (2017) Carbon dots-bromoacetyl bromide conjugates as fluorescence probe for the detection of glutathione over cysteine and homocysteine. Sensor Actuat B-Chem 251:753–762. https://doi.org/10.1016/j.snb.2017.05.050

    Article  CAS  Google Scholar 

  33. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13(12):2397–2404. https://doi.org/10.1039/C3LC50072A

    Article  CAS  PubMed  Google Scholar 

  34. Dungchai W, Sameenoi Y, Chailapakul O, Volckens J, Henry CS (2013) Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices. Analyst 138(22):6766–6773. https://doi.org/10.1039/C3AN01235B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koziar JC, Cowan DO (1978) Photochemical heavy-atom effects. Acc Chem Res 11(9):334–341. https://doi.org/10.1021/ar50129a003

    Article  CAS  Google Scholar 

  36. Kim JP, Xie Z, Creer M, Liu Z, Yang J (2017) Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of cystic fibrosis. Chem Sci 8(1):550–558. https://doi.org/10.1039/C6SC02962K

    Article  CAS  PubMed  Google Scholar 

  37. Salemi G, Gueli MC, D’Amelio M, Saia V, Mangiapane P, Aridon P, Ragonese P, Lupo I (2009) Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol Sci 30(4):361–364. https://doi.org/10.1007/s10072-009-0090-2

    Article  PubMed  Google Scholar 

  38. Wu D, Li G, Chen X, Qiu N, Shi X, Chen G, Sun Z, You J, Wu Y (2017) Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Microchim Acta 184(7):1923–1931. https://doi.org/10.1007/s00604-017-2187-2

    Article  CAS  Google Scholar 

  39. Tang YR, Song HJ, Su YY, Lv Y (2013) Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem 85(24):11876–11884. https://doi.org/10.1021/ac403517u

    Article  CAS  PubMed  Google Scholar 

  40. Zhang N, Qu F, Luo HQ, Li NB (2013) Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Biosens Bioelectron 42:214–218. https://doi.org/10.1016/j.bios.2012.10.090

    Article  CAS  PubMed  Google Scholar 

  41. Han BY, Yuan JP, Wang EK (2009) Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Anal Chem 81(13):5569–5573. https://doi.org/10.1021/ac900769h

    Article  CAS  PubMed  Google Scholar 

  42. Liang JY, Han L, Liu SG, Ju YJ, Li NB, Luo HQ (2019) Carbon dots-based fluorescent turn off/on sensor for highly selective and sensitive detection of Hg2+ and biothiols. Spectrochim Acta A 222. https://doi.org/10.1016/j.saa.2019.117260

  43. Zhao WF, Sun MM, Lei T, Liu XJ, Zhang QQ, Zong CH (2017) An indicator-displacement assay based on the Murexide-Hg2+ system for fluorescence turn-on detection of biothiols in biological fluids. Sensors Actuators B Chem 249:90–95. https://doi.org/10.1016/j.snb.2017.04.017

    Article  CAS  Google Scholar 

  44. Park KS, Kim MI, Woo MA, Park HG (2013) A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Biosens Bioelectron 45:65–69. https://doi.org/10.1016/j.bios.2013.01.047

    Article  CAS  PubMed  Google Scholar 

  45. Lafuente M, Sola J, Alfonso I (2018) A dynamic chemical network for cystinuria diagnosis. Angew Chem Int Ed 57(28):8421–8424. https://doi.org/10.1002/anie.201802189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by projects from the Spanish MINECO (CTQ2017-86125 and CTQ2016-78754-C2-1-R). The project was also partially supported by the European Regional Development Funds (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Salinas-Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

The online version of this article (https://doi.org/10.1007/xxxxxx) contains supplementary material, which is available to authorized users (PDF 1864 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Gomez, I., Ortega-Muñoz, M., Marín-Sánchez, A. et al. A vinyl sulfone clicked carbon dot-engineered microfluidic paper-based analytical device for fluorometric determination of biothiols. Microchim Acta 187, 421 (2020). https://doi.org/10.1007/s00604-020-04382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04382-9

Keywords

Navigation