Skip to main content
Log in

Photoelectrochemical aptasensor for thrombin based on Au-rGO-CuS as signal amplification elements

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical platform for thrombin determination was developed based on Au-rGO-CuS as multiple signal amplification elements. CuInS2 QDs was used to sensitize burr-shape TiO2 (b-TiO2) to obtain a strong photocurrent. Under the specific recognition between aptamer and thrombin, a sandwichlike structure was formed and the Au-rGO-CuS-labeled aptamer (S2@Au-rGO-CuS) was immobilized on the electrode surface. This induced a sharp decrease in photocurrent. The phenomenon is mainly due to the fact that CuS NPs can competitively consume the light energy and electron donor with CuInS2/b-TiO2. The rGO can increase the amount of CuS NPs and the Au NPs can accelerate charge transferring which depress the recombination of photogenerated electrons and holes in CuS to further enhance the competitive capacity of CuS. The sandwichlike structure has a steric hindrance effect. Therefore, the S2@Au-rGO-CuS has a multiple signal amplification function for thrombin determination. Under optimal conditions, the PEC aptasensor exhibited a wide linear concentration range from 0.1 pM to 10 nM with a low detection limit of 30 fM (S/N = 3) for thrombin. Besides, the designed aptasensor performed well in the assay of human serum sample, indicating good potential for the determination of thrombin in real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang R, Yan X, Li Y, Zhang X, Chen J (2017) Nitrogen-doped porous carbon-ZnO nanopolyhedra Derived from ZIF-8: new materials for photoelectrochemical biosensors. ACS Appl Mater Interfaces 9(49):42482–42491. https://doi.org/10.1021/acsami.7b10856

    Article  CAS  Google Scholar 

  2. Zang Y, Lei J, Hao Q, Ju H (2016) CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation. Biosens Bioelectron 77:557–564. https://doi.org/10.1016/j.bios.2015.10.010

    Article  CAS  Google Scholar 

  3. Wang X, Gao P, Yan T, Li R, Xu R, Zhang Y, Du B, Wei Q (2018) Ultrasensitive photoelectrochemical immunosensor for insulin detection based on dual inhibition effect of CuS-SiO2 composite on CdS sensitized C-TiO2. Sensors Actuators B Chem 258:1–9. https://doi.org/10.1016/j.snb.2017.11.073

    Article  CAS  Google Scholar 

  4. Wu R, Fan GC, Jiang LP, Zhu JJ (2018) Peptide-based photoelectrochemical cytosensor using a hollow-TiO2/EG/ZnIn2S4 cosensitized structure for ultrasensitive detection of early apoptotic cells and drug evaluation. ACS Appl Mater Interfaces 10(5):4429–4438. https://doi.org/10.1021/acsami.7b16054

    Article  CAS  Google Scholar 

  5. Feng X, Pan F, Zhao H, Deng W, Zhang P, Zhou HC, Li Y (2018) Atomic layer deposition enabled MgO surface coating on porous TiO2 for improved CO2 photoreduction. Appl Catal B Environ 238:274–283. https://doi.org/10.1016/j.apcatb.2018.07.027

    Article  CAS  Google Scholar 

  6. Wang B, Mei L, Xu Y, Ren S, Cao J, Liu Y, Zhao W (2018) Photoelectrochemical-chemical-chemical redox cycling for advanced signal amplification: proof-of-concept toward ultrasensitive photoelectrochemical bioanalysis. Anal Chem 90:12347–12351. https://doi.org/10.1021/acs.analchem.8b03798

    Article  CAS  Google Scholar 

  7. Dong YX, Cao JT, Liu YM et al (2017) A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2, electrode by gold nanoparticles decorated polydopamine nanospheres[J]. Biosensors and Bioelectronics 91:246–252. https://doi.org/10.1016/j.bios.2016.12.043

    Article  CAS  Google Scholar 

  8. Wen G, Ju H (2016) Enhanced Photoelectrochemical proximity assay for highly selective protein detection in biological matrixes. Anal Chem 88(16):8339–8345. https://doi.org/10.1021/acs.analchem.6b02740

    Article  CAS  Google Scholar 

  9. Dai WX, Zhang L, Zhao WW, Yu XD, Xu JJ, Chen HY (2017) Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal Chem 89(15):8070–8078. https://doi.org/10.1021/acs.analchem.7b01557

    Article  CAS  Google Scholar 

  10. Shen Q, Han L, Fan G, Zhang JR, Jiang L, Zhu JJ (2015) “Signal-on” photoelectrochemical biosensor for sensitive detection of human T-cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension. Anal Chem 87(9):4949–4956. https://doi.org/10.1021/acs.analchem.5b00679

    Article  CAS  Google Scholar 

  11. Jara DH, Yoon SJ, Stamplecoskie KG, Kamat PV (2014) Size-dependent photovoltaic performance of CuInS2 quantum dot- sensitized. Solar Cells Chem Mater 26:7221–7228. https://doi.org/10.1021/cm5040886

    Article  CAS  Google Scholar 

  12. Du, J.; Du, Z.; Hu, J. S.; Pan, Z.; Shen, Q.; Sun, J.; Long, D.; Dong, H.; Sun, L.; Zhong, X.; et al (2016) Zn-cu-in-se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138 (12), 4201–4209. https://doi.org/10.1021/jacs.6b00615

  13. Huang L, Zhang L, Yang L, Yuan R, Yuan Y (2018) Manganese porphyrin decorated on DNA networks as quencher and mimicking enzyme for construction of ultrasensitive photoelectrochemistry aptasensor. Biosens Bioelectron 104:21–26. https://doi.org/10.1016/j.bios.2017.12.037

    Article  CAS  Google Scholar 

  14. Liu Y, Zhang Y, Wu D, Fan D, Pang X, Zhang Y, Ma H, Sun X, Wei Q (2016) Visible-light driven photoelectrochemical immunosensor for insulin detection based on MWCNTs@SnS2@CdS nanocomposites. Biosens Bioelectron 86:301–307. https://doi.org/10.1016/j.bios.2016.06.069

    Article  CAS  Google Scholar 

  15. Wang B, Dong YX, Wang YL, Cao JT, Ma SH, Liu YM (2017) Quenching effect of exciton energy transfer from CdS:Mn to au nanoparticles: a highly efficient photoelectrochemical strategy for microRNA-21 detection[J]. Sensors & Actuators B Chemical 254:159–165. https://doi.org/10.1016/j.snb.2017.07.078

    Article  CAS  Google Scholar 

  16. Li L, Zheng X, Huang Y, Zhang L, Cui K, Zhang Y, Yu J (2018) Addressable TiO2 nanotubes functionalized paper-based cyto-sensor with photocontrollable switch for highly-efficient evaluating surface protein expressions of cancer cells. Anal Chem 90:13882–13890. https://doi.org/10.1021/acs.analchem.8b02849

    Article  CAS  Google Scholar 

  17. Fan GC, Zhu H, Du D, Zhang JR, Zhu JJ, Lin Y (2016) Enhanced photoelectrochemical immunosensing platform based on CdSeTe@CdS:Mn Core-Shell quantum dots-sensitized TiO2 amplified by CuS nanocrystals conjugated signal antibodies. Anal Chem 88(6):3392–3399. https://doi.org/10.1021/acs.analchem.6b00144

    Article  CAS  Google Scholar 

  18. Dong YX, Cao JT, Wang B, Ma SH, Liu YM (2018) Spatial-resolved photoelectrochemical biosensing array based on a CdS@g-C3N4 heterojunction: a universal immunosensing platform for accurate detection. ACS Appl Mater Interfaces 10(4):3723–3731. https://doi.org/10.1021/acsami.7b13557

    Article  CAS  Google Scholar 

  19. Gairola P, Gairola SP, Kumar V, Singh K, Dhawan SK (2016) Barium ferrite and graphite integrated with polyaniline as effective shield against electromagnetic interference. Synth Met 221:326–331. https://doi.org/10.1016/j.synthmet.2016.09.023

    Article  CAS  Google Scholar 

  20. Al-Kahtani AA, Abou Taleb MF (2016) Photocatalytic degradation of maxilon C.I. basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation. J Hazard Mater 309:10–19. https://doi.org/10.1016/j.jhazmat.2016.01.071

    Article  CAS  Google Scholar 

  21. Hu XS, Shen Y, Zhang YT, Nie JJ (2017) Preparation of flower-like CuS/reduced graphene oxide (RGO) photocatalysts for enhanced photocatalytic activity. J Phys Chem Solids 103:201–208. https://doi.org/10.1016/j.jpcs.2016.12.021

    Article  CAS  Google Scholar 

  22. Nekouei F, Nekouei S, Jashnsaz O, Pouzesh M (2018) Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow manospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing ofgGluco. Mater Sci Eng C 90:576–588. https://doi.org/10.1016/j.msec.2018.05.001

    Article  CAS  Google Scholar 

  23. Yu S, Webster RD, Zhou Y, Yan X (2017) Novel carboxylated graphene oxide-CuS-Ag nanocomposite glass coating for organic degradation under solar light. J Chem Technol Biotechnol 92(10):2626–2634. https://doi.org/10.1002/jctb.5280

    Article  CAS  Google Scholar 

  24. Huang D, Wang L, Zhan Y, Zou L, Ye B (2019) Photoelectrochemical biosensor for CEA detection based on SnS2-GR with multiple quenching effects of Au@CuS-GR. Biosens. Bioelectron 140(May). https://doi.org/10.1016/j.bios.2019.111358

  25. Khonsari, Y.N., Sun, S., (2018) Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Microchim Acta 185. https://doi.org/10.1007/s00604-018-2942-z

  26. Lin Y, Sun Y, Dai Y, Sun W, Zhu X, Liu H, Han R, Gao D, Luo C, Wang X (2020) A “signal-on” chemiluminescence biosensor for thrombin detection based on DNA functionalized magnetic sodium alginate hydrogel and metalloporphyrinic metal-organic framework nanosheets. Talanta 207:120300. https://doi.org/10.1016/j.talanta.2019.120300

    Article  CAS  Google Scholar 

  27. Tong, Y.J., Song, A.M., Yu, L.D., Liang, R.P., Qiu, J.D., 2020. Aggregation-induced fluorescence of the luminol-terbium(III) complex in polymer nanoparticles for sensitive determination of thrombin. Microchim. Acta 187. https://doi.org/10.1007/s00604-019-4043-z

  28. Saa L, Díez-Buitrago B, Briz N, Pavlov V (2019) CdS quantum dots generated in-situ for fluorometric determination of thrombin activity. Microchim Acta 186. https://doi.org/10.1007/s00604-019-3765-2

  29. Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient Sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron 56:231–236. https://doi.org/10.1016/j.bios.2014.01.021

    Article  CAS  Google Scholar 

  30. Cheng W, Pan J, Yang J, Zheng Z, Lu F, Chen Y, Gao W (2018) A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO2 and visible-light photoelectrochemical activity. Microchim Acta 185:2–11. https://doi.org/10.1007/s00604-018-2800-z

    Article  CAS  Google Scholar 

  31. Wu D, Zhu F, Li J, Dong H, Li Q, Jiang K, Xu D (2012) Monodisperse TiO2 hierarchical hollow spheres assembled by Nanospindles for dye-sensitized solar cells. J Mater Chem 22(23):11665–11671. https://doi.org/10.1039/c2jm30786c

    Article  CAS  Google Scholar 

  32. Chen YC, Chang HH, Hsu YK (2018) Synthesis of CuInS2 quantum dots/In2S3/ZnO nanowire arrays with high photoelectrochemical activity. ACS Sustain Chem Eng 6(8):10861–10868. https://doi.org/10.1021/acssuschemeng.8b02154

    Article  CAS  Google Scholar 

  33. Guo F, He J, Li J, Wu W, Hang Y, Hua J (2013) Photovoltaic performance of Bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot cuins2 as barrier layer material. J Colloid Interface Sci 408(1):59–65. https://doi.org/10.1016/j.jcis.2013.06.069

    Article  CAS  Google Scholar 

  34. Yun JH, Ng YH, Huang S, Conibeer G, Amal R (2011) Wrapping the walls of N-TiO2 nanotubes with P-CuInS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chem Commun 47(40):11288–11290. https://doi.org/10.1039/c1cc13738g

    Article  CAS  Google Scholar 

  35. Chen Y, Li S, Huang L, Pan D (2014) Low-cost and gram-scale synthesis of water-soluble cu-in-S/ZnS Core/shell quantum dots in an electric pressure cooker. Nanoscale 6(3):1295–1298. https://doi.org/10.1039/c3nr05014a

    Article  CAS  Google Scholar 

  36. Song W, Nie G, Ji W, Jiang Y, Lu X, Zhao B, Ozaki Y (2016) Synthesis of bifunctional reduced graphene oxide/CuS/Au composite Nanosheets for in situ monitoring of a peroxidase-like catalytic reaction by surface-enhanced Raman spectroscopy. RSC Adv 6(59):54456–54462. https://doi.org/10.1039/c6ra09471f

    Article  CAS  Google Scholar 

  37. Zhang Y, Xia J, Zhang F, Wang Z, Liu Q (2018) A dual-channel homogeneous aptasensor combining colorimetric with electrochemical strategy for thrombin. Biosens Bioelectron 120(April):15–21. https://doi.org/10.1016/j.bios.2018.08.031

    Article  CAS  Google Scholar 

  38. Zhang H, Shuang S, Sun L, Chen A, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181(1–2):189–196. https://doi.org/10.1007/s00604-013-1093-5

    Article  CAS  Google Scholar 

  39. Yan F, Wang F, Chen Z (2011) Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sensors Actuators B Chem 160(1):1380–1385. https://doi.org/10.1016/j.snb.2011.09.081

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. U1504216; 21575130) and Startup Research Fund of Zhengzhou University (Grant no. 1511316006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zou.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Yang, L., Zhan, Y. et al. Photoelectrochemical aptasensor for thrombin based on Au-rGO-CuS as signal amplification elements. Microchim Acta 187, 433 (2020). https://doi.org/10.1007/s00604-020-04380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04380-x

Keywords

Navigation