Skip to main content
Log in

G-quadruplex-based assay combined with aptamer and gold nanoparticles for Escherichia coli K88 determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric method was developed using G-quadruplex and gold nanoparticles (AuNPs) for determination of Escherichia coli K88 (ETEC K88). It was composed of two modules: (1) an aptamer as biorecognizing element and (2) a capturing DNA (modified with AuNPs at 5′) as a transducer. In the absence of target bacteria, the aptamer can form stable double strands with capturing DNA, preventing the binding of capturing DNA to the G-quadruplex. However, the double strands of capturing DNA and aptamer are untied due to the stronger binding of aptamers to bacteria in the presence of target bacteria. As a result, the G-quadruplex binds to capture DNA and leads to the aggregation and color change of AuNPs, which can be monitored by a spectrophotometer or visualization. The quantitative determination was achieved by monitoring the optical density change of AuNPs solution at 524 nm after target addition. Under optimal conditions, the method has a low detection limit (1.35 × 102 CFU mL−1) and a linear response in the range 102 to 106 CFU mL−1.

The manuscripts describe a colorimetric method for the detection of ETEC K88 by using intermolecular G-quadruplex to induce the agglomeration of gold nanoparticles, which can be directly used to determine the presence of bacteria with our naked eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. King T, Cole M, Farber JM, Eisenbrand G, Zabaras D, Fox EM, Hill JP (2017) Food safety for food security: relationship between global megatrends and developments in food safety. Trends Food Sci Technol 68:160–175

    Article  CAS  Google Scholar 

  2. Zhang Z, Tang H, Chen P, Xie H, Tao Y (2019) Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 4(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140

    Article  CAS  PubMed  Google Scholar 

  4. Lazcka O, Campo FJD, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217

    Article  CAS  PubMed  Google Scholar 

  5. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178(1):7–28

    Article  CAS  Google Scholar 

  6. Pappert G, Rieger M, Niessner R, Seidel M (2010) Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli. Microchim Acta 168(1):1–8

    Article  CAS  Google Scholar 

  7. Wang D, Chen J, Nugen SR (2017) Electrochemical detection of Escherichia coli from aqueous samples using engineered phages. Anal Chem 89(3):1650–1657

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Sui Z, Lin J, Huo N, Yang J, Wang B, Gu S (2019) Rapid detection of single viable Escherichia coli O157:H7 cells in milk by flow cytometry. J Food Saf 39(4):e12657

    Article  Google Scholar 

  9. Verma MS, Rogowski JL, Jones L, Gu FX (2015) Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv 33(6, Part 1):666–680

    Article  CAS  PubMed  Google Scholar 

  10. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  CAS  PubMed  Google Scholar 

  11. Mou X-Z, Chen X-Y, Wang J, Zhang Z, Yang Y, Shou Z-X, Tu Y-X, Du X, Wu C, Zhao Y, Qiu L, Jiang P, Chen C, Huang D-S, Li Y-Q (2019) Bacteria-instructed click chemistry between functionalized gold nanoparticles for point-of-care microbial detection. ACS Appl Mater Interfaces 11(26):23093–23101

    Article  CAS  Google Scholar 

  12. Peng H, Chen IA (2019) Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano 13(2):1244–1252

    CAS  Google Scholar 

  13. Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J (2019) A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron 124-125:143–149

    Article  CAS  Google Scholar 

  14. Zhu L, Li S, Shao X, Feng Y, Xie P, Luo Y, Huang K, Xu W (2019) Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Microchim Acta 186(2):111

    Article  Google Scholar 

  15. Chen Y-J, Groves B, Muscat RA, Seelig G (2015) DNA nanotechnology from the test tube to the cell. Nat Nanotechnol 10:748–760

    Article  CAS  Google Scholar 

  16. Hu L, Liu X, Cecconello A, Willner I (2014) Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett 14(10):6030–6035

    Article  CAS  Google Scholar 

  17. Hu L, Lu C-H, Willner I (2015) Switchable catalytic DNA catenanes. Nano Lett 15(3):2099–2103

    Article  CAS  Google Scholar 

  18. Huppert JL (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 37(7):1375–1384

    Article  CAS  Google Scholar 

  19. He F, Tang Y, Wang S, Li Y, Zhu D (2005) Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. J Am Chem Soc 127(35):12343–12346

    Article  CAS  Google Scholar 

  20. Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129(45):13939–13948

    Article  CAS  PubMed  Google Scholar 

  21. Lu JY, Zhang XX, Huang WT, Zhu QY, Ding XZ, Xia LQ, Luo HQ, Li NB (2017) Boolean logic tree of label-free dual-signal electrochemical aptasensor system for biosensing, three-state logic computation, and keypad lock security operation. Anal Chem 89(18):9734–9741

    Article  CAS  PubMed  Google Scholar 

  22. Zhou H, Xie S-J, Li J-S, Wu Z-S, Shen G-L (2012) Intermolecular G-quadruplex-based universal quencher free molecular beacon. Chem Commun 48(87):10760–10762

    Article  CAS  Google Scholar 

  23. Huang Z, Peng J, Han J, Zhang G, Huang Y, Duan M, Liu D, Xiong Y, Xia S, Lai W (2019) A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Food Chem 276:333–341

    Article  CAS  PubMed  Google Scholar 

  24. Ling M, Peng Z, Cheng L, Deng L (2015) Rapid fluorescent detection of enterotoxigenic Escherichia coli (ETEC) K88 based on graphene oxide-dependent nanoquencher and Klenow fragment-triggered target cyclic amplification. Appl Spectrosc 69(10):1175–1181

    Article  CAS  PubMed  Google Scholar 

  25. Chen R, Huang X, Li J, Shan S, Lai W, Xiong Y (2016) A novel fluorescence immunoassay for the sensitive detection of Escherichia coli O157:H7 in milk based on catalase-mediated fluorescence quenching of CdTe quantum dots. Anal Chim Acta 947:50–57

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Chen Z, Wang S, Jin X, Yang L, Liu G, Zhao J (2017) Highly selective detection of Escherichia coli O157:H7 based on micro-gapped interdigitated electrode arrays. Biotechnol Biotechnol Equip 31(5):1070–1078

    Article  CAS  Google Scholar 

  27. Jiang K, Etayash H, Azmi S, Naicker S, Hassanpourfard M, Shaibani PM, Thakur G, Kaur K, Thundat T (2015) Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy. Anal Methods 7(23):9744–9748

    Article  CAS  Google Scholar 

  28. Wang R, Xu Y, Liu H, Peng J, Irudayaraj J, Cui F (2017) An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli. Biomed Microdevices 19(2):34

    Article  PubMed  Google Scholar 

  29. Viviana Tarditto L, Alicia Zon M, García Ovando H, Roberto Vettorazzi N, Javier Arévalo F, Fernández H (2017) Electrochemical magneto immunosensor based on endogenous β-galactosidase enzyme to determine enterotoxicogenic Escherichia coli F4 (K88) in swine feces using square wave voltammetry. Talanta 174:507–513

    Article  PubMed  Google Scholar 

  30. Tarditto LV, Arévalo FJ, Zon MA, Ovando HG, Vettorazzi NR, Fernández H (2016) Electrochemical sensor for the determination of enterotoxigenic Escherichia coli in swine feces using glassy carbon electrodes modified with multi-walled carbon nanotubes. Microchem J 127:220–225

    Article  CAS  Google Scholar 

  31. Yu J, Su J, Zhang J, Wei X, Guo A (2017) CdTe/CdS quantum dot-labeled fluorescent immunochromatography test strips for rapid detection of Escherichia coli O157:H7. RSC Adv 7(29):17819–17823

    Article  CAS  Google Scholar 

  32. Gumustas A, Caglayan MG, Eryilmaz M, Suludere Z, Acar Soykut E, Uslu B, Boyaci IH, Tamer U (2018) Paper based lateral flow immunoassay for the enumeration of Escherichia coli in urine. Anal Methods 10(10):1213–1218

    Article  CAS  Google Scholar 

  33. Sun J, Warden AR, Huang J, Wang W, Ding X (2019) Colorimetric and electrochemical detection of Escherichia coli and antibiotic resistance based on a p-benzoquinone-mediated bioassay. Anal Chem 91(12):7524–7530

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Yan C, Yang H, Yu J, Wei H (2017) Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry. Food Chem 234:332–338

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (31770109), the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education (KLCBTCMR18-03), project funded by China Postdoctoral Science Foundation (2018 M640753), and Hunan Provincial Innovation Foundation for Postgraduate (CX20190392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Lu, Q., Xu, T. et al. G-quadruplex-based assay combined with aptamer and gold nanoparticles for Escherichia coli K88 determination. Microchim Acta 187, 308 (2020). https://doi.org/10.1007/s00604-020-04291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04291-x

Keywords

Navigation