Skip to main content
Log in

β-Cyclodextrin-/AuNPs-functionalized covalent organic framework-based magnetic sorbent for solid phase extraction and determination of sulfonamides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

β-Cyclodextrin-functionalized magnetic covalent organic framework (Fe3O4@COF@Au-β-CD) was developed as sorbent for magnetic solid phase extraction of trace sulfonamides in meat samples prior to HPLC-MS/MS analysis. The sorbent was synthesized by loading gold nanoparticles onto a Fe3O4@COF surface and then functionalized by thiolated-β-cyclodextrin immobilization via Au-S bonding formation. The prepared composite material was employed for sulfonamides extraction. The main parameters were optimized to obtain the best extraction efficiency. The experiments of adsorption kinetics were carried out to investigate the adsorption mechanism. Results showed the pseudo-second-order kinetic was better fitted with the adsorption kinetics of sulfonamides. Under optimized conditions, the magnetic solid phase extraction-HPLC method showed good linearity (R2 ≥ 0.9936), and the limits of detection were in the range of 0.8–1.6 μg kg−1. The proposed method was successfully used for quantitation of sulfonamides in real samples. The recoveries ranged from 78.9 to 112.0% with relative standard deviations (RSDs) < 10% (n = 5). The proposed method exhibited great potential for enrichment and determination of sulfonamides in many other food or environment samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dmitrienko SG, Kochuk EV, Apyari VV, Tolmacheva VV, Zolotov YA (2014) Recent advances in sample preparation techniques and methods of sulfonamides detection–a review. Anal Chim Acta 850:6–25. https://doi.org/10.1016/j.aca.2014.08.023

    Article  CAS  Google Scholar 

  2. van den Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics: links between animals and humans. Int J Antimicrob Agents 14(4):327–335. https://doi.org/10.1016/S0924-8579(00)00145-X

    Article  Google Scholar 

  3. Zhao X, Wang J, Wang J, Wang S (2018) Development of water-compatible molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography–tandem mass spectrometry for the detection of six sulfonamides in animal-derived foods. J Chromatogr A 1574:9–17. https://doi.org/10.1016/j.chroma.2018.08.044

    Article  CAS  Google Scholar 

  4. Zhang YD, Zheng N, Han RW, Zheng BQ, Yu ZN, Li SL, Zheng SS, Wang JQ (2014) Occurrence of tetracyclines, sulfonamides, sulfamethazine and quinolones in pasteurized milk and UHT milk in China's market. Food Control 36(1):238–242. https://doi.org/10.1016/j.foodcont.2013.08.012

    Article  CAS  Google Scholar 

  5. Veach BT, Mudalige TK, Rye P (2017) Rapid fire mass spectrometry with enhanced throughput as an alternative to liquid–liquid salt assisted extraction and LC/MS analysis for sulfonamides in honey. Anal Chem 89(6):3256–3260 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04889

    Article  CAS  Google Scholar 

  6. Chen Y, Guo Z, Wang X, Qiu C (2008) Sample preparation. J Chromatogr A 1184(1-2):191–219. https://doi.org/10.1016/j.chroma.2007.10.026

    Article  CAS  Google Scholar 

  7. S-f Y, Z-h L, Yin H, Dang Z, Wu P-X, Zhu N-W, Lin Z (2019) Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant. Sci Total Environ 653:815–821. https://doi.org/10.1016/j.scitotenv.2018.10.417

    Article  CAS  Google Scholar 

  8. Liu Z, Yu W, Zhang H, Gu F, Jin X (2016) Salting-out homogenous extraction followed by ionic liquid/ionic liquid liquid–liquid micro-extraction for determination of sulfonamides in blood by high performance liquid chromatography. Talanta 161:748–754. https://doi.org/10.1016/j.talanta.2016.09.006

    Article  CAS  Google Scholar 

  9. Wu Q, Wu D, Shen Z, Duan C, Guan Y (2013) Quantification of endogenous brassinosteroids in plant by on-line two-dimensional microscale solid phase extraction-on column derivatization coupled with high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1297:56–63. https://doi.org/10.1016/j.chroma.2013.04.043

    Article  CAS  Google Scholar 

  10. Li X, Li Q, Xue A, Chen H, Li S (2016) Dispersive liquid-liquid microextraction coupled with single-drop microextraction for the fast determination of sulfonamides in environmental water samples by high performance liquid chromatography-ultraviolet detection. Anal Methods 8(3):517–525. https://doi.org/10.1039/C5AY02619A

    Article  CAS  Google Scholar 

  11. Li X, Yu H, Peng R, Gan P (2017) Determination of 19 sulfonamides residues in pork samples by combining QuEChERS with dispersive liquid–liquid microextraction followed by UHPLC–MS/MS. J Sep Sci 40(6):1377–1384. https://doi.org/10.1002/jssc.201601034

    Article  CAS  Google Scholar 

  12. Yang Y, Li G, Wu D, Liu J, Li X, Luo P, Hu N, Wang H, Wu Y (2019) Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2019.12.021

  13. Liu Y, Li H, Lin J-M (2009) Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography–mass spectrometry. Talanta 77(3):1037–1042. https://doi.org/10.1016/j.talanta.2008.08.013

    Article  CAS  Google Scholar 

  14. Wang X, Hu X, Shao Y, Peng L, Zhang Q, Zhou T, Xiang Y, Ye N (2019) Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids. Microchim Acta 186(9):650. https://doi.org/10.1007/s00604-019-3741-x

    Article  CAS  Google Scholar 

  15. Li N, Du J, Wu D, Liu J, Li N, Sun Z, Li G, Wu Y (2018) Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment. TrAC Trends Anal Chem 108:154–166. https://doi.org/10.1016/j.trac.2018.08.025

    Article  CAS  Google Scholar 

  16. Li Y, Yang C-X, Yan X-P (2017) Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem Commun 53(16):2511–2514. https://doi.org/10.1039/C6CC10188G

    Article  CAS  Google Scholar 

  17. Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38(2):344–368. https://doi.org/10.1016/j.progpolymsci.2012.06.005

    Article  CAS  Google Scholar 

  18. Belenguer-Sapiña C, Pellicer-Castell E, Vila C, Simó-Alfonso EF, Amorós P, Mauri-Aucejo AR (2019) A poly (glycidyl-co-ethylene dimethacrylate) nanohybrid modified with β-cyclodextrin as a sorbent for solid-phase extraction of phenolic compounds. Microchim Acta 186(9):615. https://doi.org/10.1007/s00604-019-3739-4

    Article  CAS  Google Scholar 

  19. Liu G, Li L, Xu D, Huang X, Xu X, Zheng S, Zhang Y, Lin H (2017) Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr Polym 175:584–591. https://doi.org/10.1016/j.carbpol.2017.06.074

    Article  CAS  Google Scholar 

  20. Deng Z-H, Wang X, Wang X-L, Gao C-L, Dong L, Wang M-L, Zhao R-S (2019) A core-shell structured magnetic covalent organic framework (type Fe3O4@ COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their quantitation by HPLC. Microchim Acta 186(2):108. https://doi.org/10.1007/s00604-018-3198-3

    Article  CAS  Google Scholar 

  21. Zhang T, Chen Y, Huang W, Wang Y, Hu X (2018) A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sensors Actuators B Chem 276:362–369. https://doi.org/10.1016/j.snb.2018.08.132

    Article  CAS  Google Scholar 

  22. Ma W-F, Zhang Y, Li L-L, You L-J, Zhang P, Zhang Y-T, Li J-M, Yu M, Guo J, Lu H-J, Wang C-C (2012) Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable Mesoporous Anatase Shell for highly selective and effective enrichment of Phosphopeptides. ACS Nano 6(4):3179–3188. https://doi.org/10.1021/nn3009646

    Article  CAS  Google Scholar 

  23. Li N, Wu D, Liu J, Hu N, Shi X, Dai C, Sun Z, Suo Y, Li G, Wu Y (2018) Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples. Microchem J 143:350–358. https://doi.org/10.1016/j.microc.2018.08.036

    Article  CAS  Google Scholar 

  24. Xia L, Liu L, Lv X, Qu F, Li G, You J (2017) Towards the determination of sulfonamides in meat samples: a magnetic and mesoporous metal-organic framework as an efficient sorbent for magnetic solid phase extraction combined with high-performance liquid chromatography. J Chromatogr A 1500:24–31. https://doi.org/10.1016/j.chroma.2017.04.004

    Article  CAS  Google Scholar 

  25. Zhai Y, He Q, Han Q, Se D (2012) Solid-phase extraction of trace metal ions with magnetic nanoparticles modified with 2,6-diaminopyridine. Microchim Acta 178(3–4):405–412. https://doi.org/10.1007/s00604-012-0857-7

    Article  CAS  Google Scholar 

  26. Yang H, Cheng X, Cheng X, Pan F, Wu H, Liu G, Song Y, Cao X, Jiang Z (2018) Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J Membr Sci 565:331–341. https://doi.org/10.1016/j.memsci.2018.08.043

    Article  CAS  Google Scholar 

  27. Li S, Wu X, Zhang Q, Li P (2016) Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Microchim Acta 183(4):1433–1439. https://doi.org/10.1007/s00604-016-1765-z

    Article  CAS  Google Scholar 

  28. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462. https://doi.org/10.1016/j.biortech.2012.11.132

    Article  CAS  Google Scholar 

  29. Gao P-S, Guo Y, Li X, Wang X, Wang J, Qian F, Gu H, Zhang Z (2018) Magnetic solid phase extraction of sulfonamides based on carboxylated magnetic graphene oxide nanoparticles in environmental waters. J Chromatogr A 1575:1–10. https://doi.org/10.1016/j.chroma.2018.09.015

    Article  CAS  Google Scholar 

  30. Lu K-H, Chen C-Y, Lee M-R (2007) Trace determination of sulfonamides residues in meat with a combination of solid-phase microextraction and liquid chromatography–mass spectrometry. Talanta 72(3):1082–1087. https://doi.org/10.1016/j.talanta.2007.01.022

    Article  CAS  Google Scholar 

  31. Gao S, Yang X, Yu W, Liu Z, Zhang H (2012) Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid–liquid microextraction for the determination of sulfonamides in infant formula milk powder using high-performance liquid chromatography. Talanta 99:875–882. https://doi.org/10.1016/j.talanta.2012.07.050

    Article  CAS  Google Scholar 

  32. Yu H, Mu H, Hu Y-M (2012) Determination of fluoroquinolones, sulfonamides, and tetracyclines multiresidues simultaneously in porcine tissue by MSPD and HPLC–DAD. Journal of Pharmaceutical Analysis 2(1):76–81. https://doi.org/10.1016/j.jpha.2011.09.007

    Article  CAS  Google Scholar 

  33. Heller DN, Ngoh MA, Donoghue D, Podhorniak L, Righter H, Thomas MH (2002) Identification of incurred sulfonamide residues in eggs: methods for confirmation by liquid chromatography–tandem mass spectrometry and quantitation by liquid chromatography with ultraviolet detection. J Chromatogr B 774(1):39–52. https://doi.org/10.1016/S1570-0232(02)00187-3

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2017JL012), the National Natural Science Foundation of China (21677085), the Science and Technology Nova Plan of Shaanxi Province (2019KJXX-010), and the Youth Innovation Team of Shaanxi Universities (Food Quality and Safety).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoliang Li or Xuxia Zhou.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2187 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, G., Wu, D. et al. β-Cyclodextrin-/AuNPs-functionalized covalent organic framework-based magnetic sorbent for solid phase extraction and determination of sulfonamides. Microchim Acta 187, 278 (2020). https://doi.org/10.1007/s00604-020-04257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04257-z

Keywords

Navigation