Skip to main content
Log in

A novel bi-modal probe based on BaHoF5 and Cu-doped QDs with enhanced CT contrast efficiency and fluorescent brightness for tumor-targeting imaging

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In this work, a novel bi-modal imaging probe with enhanced CT contrast efficiency and FL brightness was constructed, in which the combination of a binary CT contrast agent BaHoF5 and Cu-doped QDs served as a vehicle; hyaluronic acid (HA) was employed as a tumor-targeting ligand. With its CT contrast efficiency about 2.1- and 3.9-fold higher than PEG-BaHoF5 and Iohexol, the CT contrast efficiency and the fluorescent brightness of the bi-modal probe were both enhanced. Likewise, its fluorescent brightness is almost 6-fold brighter after Cu-doped QDs loading. The most important contribution of this work lies on the proposed strategy. The inherent contradiction of the imaging sensitivity of CT and FL imaging is well balanced and a great CT/FL bi-modal imaging performance is simultaneously obtained even at low concentration (400 μg/mL) of the probe, which was superior to the previous CT/FL bi-modal probes. Moreover, since BaHoF5 as a binary CT contrast agent was introduced instead of conventional Au and Bi2S3, the CT/FL bi-modal probe would be more suitable for different patients under different operation voltages. In addition, the in vitro tumor cell imaging also demonstrated a good photo-stability, FL brightness, and tumor-targeting capability of the probe, indicating its great potential in practical bi-modal imaging for further tumor diagnosis and therapy.

A novel bi-modal imaging probe with enhanced CT contrast efficiency and FL brightness was fabricated, in which its CT contrast efficiency was about 2.1- and 3.9-fold higher than PEG-BaHoF5 and Iohexol, respectively, and its fluorescent brightness almost 6-fold brighter after Cu-doped QDs loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672. https://doi.org/10.1039/c2cs15261d

    Article  CAS  Google Scholar 

  2. Zheng X, Zeng S, Hu J, Wu L, Hou X (2018) Applications of silica-based nanoparticles for multimodal bioimaging. Appl Spectrosc Rev 53(5):377–394. https://doi.org/10.1080/05704928.2017.1355312

    Article  CAS  Google Scholar 

  3. Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195. https://doi.org/10.1021/cr9003538

    Article  CAS  PubMed Central  Google Scholar 

  4. Liu YT, Mi Y, Feng SS (2011) Nanotechnology for multimodal imaging. Nanomedicine 6(7):1141–1144. https://doi.org/10.2217/nnm.11.113

    Article  Google Scholar 

  5. Zhang K, Chen HR, Li P, Bo XW, Li XL, Zeng Z, Xu HX (2015) Marriage strategy of structure and composition designs for intensifying ultrasound & MR & CT trimodal contrast imaging. ACS Appl Mater Interfaces 7(33):18590–18599. https://doi.org/10.1021/acsami.5b04999

    Article  CAS  Google Scholar 

  6. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182(9–10):1567–1589. https://doi.org/10.1007/s00604-015-1504-x

    Article  CAS  Google Scholar 

  7. Zeng S, Zhou R, Zheng X, Wu L, Hou X (2017) Mono-dispersed Ba 2+ -doped Nano-hydroxyapatite conjugated with near-infrared cu-doped CdS quantum dots for CT/fluorescence bimodal targeting cell imaging. Microchem J 134:41–48. https://doi.org/10.1016/j.microc.2017.05.003

    Article  CAS  Google Scholar 

  8. Song JT, Yang XQ, Zhang XS, Yang DM, Wang ZY, Zhao YD (2015) Facile synthesis of gold nanospheres modified by positively charged mesoporous silica, loaded with near-infrared fluorescent dye, for in vivo X-ray computed tomography and fluorescence dual mode imaging. ACS Appl Mater Interfaces 7(31):17287–17297. https://doi.org/10.1021/acsami.5b04359

    Article  CAS  Google Scholar 

  9. Yong Y, Cheng XJ, Bao T, Zu M, Yan L, Yin WY, Ge CC, Wang DL, Gu ZJ, Zhao YL (2015) Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9(12):12451–12463. https://doi.org/10.1021/acsnano.5b05825

    Article  CAS  Google Scholar 

  10. Ma JB, Huang P, He M, Pan LY, Zhou ZJ, Peng LL, Gao G, Cui DX (2012) Folic acid-conjugated LaF3:Yb,Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. J Phys Chem B 116(48):14062–14070. https://doi.org/10.1021/jp309059u

    Article  CAS  Google Scholar 

  11. Ding J, Wang Y, Ma M, Zhang Y, Lu S, Jiang Y, Qi C, Luo S, Dong G, Wen S (2013) CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials 34(1):209–216. https://doi.org/10.1016/j.biomaterials.2012.09.025

    Article  CAS  Google Scholar 

  12. Hayashi K, Nakamura M, Ishimura K (2013) Near-infrared fluorescent silica-coated gold nanoparticle clusters for X-ray computed tomography/optical dual modal imaging of the lymphatic system. Adv Healthc Mater 2(5):756–763. https://doi.org/10.1002/adhm.201200238

    Article  CAS  Google Scholar 

  13. Chen J, Yang X-Q, Meng Y-Z, Qin M-Y, Yan D-M, Qian Y, Xu G-Q, Yu Y, Ma Z-Y, Zhao Y-D (2013) Reverse microemulsion-mediated synthesis of Bi2S3–QD@SiO2–PEG for dual modal CT–fluorescence imaging in vitro and in vivo. Chem Commun 49(100):11800–11802. https://doi.org/10.1039/c3cc47710j

    Article  CAS  Google Scholar 

  14. Liu Y, Ai K, Lu L (2012) Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res 45(10):1817–1827. https://doi.org/10.1021/ar300150c

    Article  CAS  Google Scholar 

  15. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed Engl 51(6):1437–1442. https://doi.org/10.1002/anie.201106686

    Article  CAS  Google Scholar 

  16. Zheng X, Wang S, Wu L, Hou X (2018) Microwave-assisted facile synthesis of mono-dispersed Ba/ho co-doped nanohydroxyapatite for potential application as binary CT imaging contrast agent. Microchem J 141:330–336. https://doi.org/10.1016/j.microc.2018.05.044

    Article  CAS  Google Scholar 

  17. Yu S-B, Watson AD (1999) Metal-based X-ray contrast media. Chem Rev 99(9):2353–2378. https://doi.org/10.1021/cr980441p

    Article  CAS  PubMed Central  Google Scholar 

  18. Pan D, Roessl E, Schlomka JP, Caruthers SD, Senpan A, Scott MJ, Allen JS, Zhang H, Hu G, Gaffney PJ, Choi ET, Rasche V, Wickline SA, Proksa R, Lanza GM (2010) Computed tomography in color: nanoK-enhanced spectral CT molecular imaging. Angew Chem 122(50):9829–9833. https://doi.org/10.1002/ange.201005657

    Article  Google Scholar 

  19. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) Hybrid BaYbF(5) nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv Healthc Mater 1(4):461–466. https://doi.org/10.1002/adhm.201200028

    Article  CAS  PubMed Central  Google Scholar 

  20. Song J-T, Yang X-Q, Zhang X-S, Yan D-M, Yao M-H, Qin M-Y, Zhao Y-D (2015) Composite silica coated gold nanosphere and quantum dots nanoparticles for X-ray CT and fluorescence bimodal imaging. Dalton Trans 44(25):11314–11320. https://doi.org/10.1039/c5dt01286d

    Article  CAS  Google Scholar 

  21. Feng J, Chang D, Wang ZF, Shen B, Yang JJ, Jiang YY, Ju SH, He NY (2014) A FITC-doped silica coated gold nanocomposite for both in vivo X-ray CT and fluorescence dual modal imaging. RSC Adv 4(94):51950–51959. https://doi.org/10.1039/c4ra09392e

    Article  CAS  Google Scholar 

  22. Niu J, Wang X, Lv J, Li Y, Tang B (2014) Luminescent nanoprobes for in-vivo bioimaging. TrAC Trends Anal Chem 58:112–119. https://doi.org/10.1016/j.trac.2014.02.013

    Article  CAS  Google Scholar 

  23. Song ZL, Dai X, Li M, Teng H, Song Z, Xie D, Luo X (2018) Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Microchim Acta 185(10):485–488. https://doi.org/10.1007/s00604-018-3024-y

    Article  CAS  Google Scholar 

  24. Ye C, Wang Y, Li C, Yu J, Hu Y (2012) Preparation of liposomes loaded with quantum dots, fluorescence resonance energy transfer studies, and near-infrared in-vivo imaging of mouse tissue. Microchim Acta 180(1–2):117–125. https://doi.org/10.1007/s00604-012-0907-1

    Article  CAS  Google Scholar 

  25. Wang J, Ni D, Bu W, Zhou Q, Fan W, Wu Y, Liu Y, Yin L, Cui Z, Zhang X, Zhang H, Yao Z (2015) BaHoF5 nanoprobes as high-performance contrast agents for multi-modal CT imaging of ischemic stroke. Biomaterials 71:110–118. https://doi.org/10.1016/j.biomaterials.2015.08.038

    Article  CAS  Google Scholar 

  26. Li M, Xu C, Wu L, Wu P, Hou X (2015) Dually enriched Cu:CdS@ZnS QDs with both polyvinylpyrrolidone twisting and SiO2 loading for improved cell imaging. Chem Commun 51(17):3552–3555. https://doi.org/10.1039/C4CC10127H

    Article  CAS  Google Scholar 

  27. Zhou R, Sun S, Li C, Wu L, Hou X, Wu P (2018) Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl Mater Interfaces 10(40):34060–34067. https://doi.org/10.1021/acsami.8b14554

    Article  CAS  Google Scholar 

  28. Zhang G, Liu Y, Yuan Q, Zong C, Liu J, Lu L (2011) Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties. Nanoscale 3(10):4365–4371. https://doi.org/10.1039/C1NR10736D

    Article  CAS  Google Scholar 

  29. d’Amora M, Camisasca A, Boarino A, Arpicco S, Giordani S (2020) Supramolecular functionalization of carbon nano-onions with hyaluronic acid-phospholipid conjugates for selective targeting of cancer cells. Colloids Surf B: Biointerfaces 188:110779. https://doi.org/10.1016/j.colsurfb.2020.110779

    Article  CAS  Google Scholar 

  30. Huang Y-Q, Sun L-J, Zhang R, Hu J, Liu X-F, Jiang R-C, Fan Q-L, Wang L-H, Huang W (2019) Hyaluronic acid nanoparticles based on a conjugated oligomer photosensitizer: target-specific two-photon imaging, redox-sensitive drug delivery, and synergistic chemo-photodynamic therapy. ACS Appl Biol Mater 2(6):2421–2434. https://doi.org/10.1021/acsabm.9b00130

    Article  CAS  Google Scholar 

  31. Xia HX, Yang XQ, Song JT, Chen J, Zhang MZ, Yan DM, Zhang L, Qin MY, Bai LY, Zhao YD, Ma ZY (2014) Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. J Mater Chem B 2(14):1945–1953. https://doi.org/10.1039/c3tb21591a

    Article  CAS  Google Scholar 

  32. Wang Y, Jiang C, He W, Ai K, Ren X, Liu L, Zhang M, Lu L (2016) Targeted imaging of damaged bone in vivo with gemstone spectral computed tomography. ACS Nano 10(4):4164–4172. https://doi.org/10.1021/acsnano.5b07401

    Article  CAS  Google Scholar 

  33. Zhou R, Li M, Wang S, Wu P, Wu L, Hou X (2014) Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. Nanoscale 6(23):14319–14325. https://doi.org/10.1039/c4nr04473h

    Article  CAS  Google Scholar 

  34. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. JACS 129(45):13987–13996. https://doi.org/10.1021/ja0749744

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Li Chen (Analytical & Testing Center, Sichuan University) for her help with CT imaging measurements.

Funding

This work is financially supported by the National Natural Science Foundation of China (No.21575091) and the Ministry of Education of China through the 111 Project (B17030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Wu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1228 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Li, C., He, Y. et al. A novel bi-modal probe based on BaHoF5 and Cu-doped QDs with enhanced CT contrast efficiency and fluorescent brightness for tumor-targeting imaging. Microchim Acta 187, 261 (2020). https://doi.org/10.1007/s00604-020-04240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04240-8

Keywords

Navigation