Skip to main content
Log in

Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical immunosensor has been fabricated for the early determination of epithelial cell adhesion molecules (EpCAM, tumor biomarker) antigen using reduced graphene oxide (rGO) modified with nanostructured titanium dioxide (TiO2). The hydrothermally synthesized rGO@TiO2 nanocomposite has been electrophoretically deposited on indium tin oxide (ITO) coated glass substrate, and the deposition was confirmed using various spectroscopic, microscopic, and electrochemical techniques. The fabricated rGO@TiO2/ITO electrode shows improved electron transfer kinetics with an electron transfer rate constant of 1.93 × 10−7 cm·s−1. Furthermore, the rGO@TiO2/ITO electrodes were used for the covalent immobilization of monoclonal EpCAM antibodies. Electrochemical determination of the EpCAM cancer biomarker is achieved using differential pulse voltammetry by scanning the potential from − 0.4 to 0.8 V with an amplitude of 50 mV. The rGO@TiO2-based biosensor shows high sensitivity (3.24 μA·mL·ng−1·cm−2), wide detection range (0.01 ng·mL−1 to 60 ng·mL−1), and low detection limit (0.0065 ng·mL−1, S/N = 3). The fabricated biosensor is highly stable and regenerable and has been successfully applied to the determination of EpCAM in spiked human serum samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gorges TM, Tinhofer I, Drosch M, Röse L, Zollner TM, Krahn T, von Ahsen O (2012) Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12:178

    Article  CAS  PubMed  Google Scholar 

  2. Gostner JM, Fong D, Wrulich OA, Lehne F, Zitt M, Hermann M, Krobitsch S, Martowicz A, Gastl G, Spizzo G (2011) Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer 11:45

    Article  CAS  PubMed  Google Scholar 

  3. Treerattrakoon K, Chanthima W, Apiwat C, Dharakul T, Bamrungsap S (2017) Oriented conjugation of antibodies against the epithelial cell adhesion molecule on fluorescently doped silica nanoparticles for flow-cytometric determination and in vivo imaging of EpCAM, a biomarker for colorectal cancer. Microchim Acta 184:1941–1950

    Article  CAS  Google Scholar 

  4. Patriarca C, Macchi RM, Marschner AK, Mellstedt H (2012) Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev 38:68–75

    Article  CAS  PubMed  Google Scholar 

  5. Yoon HJ, Kozminsky M, Nagrath S (2014) Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano 8:1995–2017

    Article  CAS  PubMed  Google Scholar 

  6. Ntouroupi T, Ashraf S, McGregor S, Turney B, Seppo A, Kim Y, Wang X, Kilpatrick M, Tsipouras P, Tafas T (2008) Detection of circulating tumour cells in peripheral blood with an automated scanning fluorescence microscope. Br J Cancer 99:789–795

    Article  CAS  PubMed  Google Scholar 

  7. Zhao S, Yang H, Zhang M, Zhang D, Liu Y, Liu Y, Song Y, Zhang X, Li H, Ma W (2013) Circulating tumor cells (CTCs) detected by triple-marker EpCAM, CK19, and hMAM RT-PCR and their relation to clinical outcome in metastatic breast cancer patients. Cell Biochem Biophys 65:263–273

    Article  CAS  PubMed  Google Scholar 

  8. Lambrechts AC, Bosma AJ, Klaver S, Top B, Perebolte L, Van't Veer L, Rodenhuis S (1999) Comparison of immunocytochemistry, reverse transcriptase polymerase chain reaction, and nucleic acid sequence–based amplification for the detection of circulating breast cancer cells. Breast Cancer Res Treat 56:219–231

    Article  CAS  PubMed  Google Scholar 

  9. Shen H, Yang J, Chen Z, Chen X, Wang L, Hu J, Ji F, Xie G, Feng W (2016) A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs. Biosens Bioelectron 81:495–502

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82:7008–7014

    Article  CAS  Google Scholar 

  11. Shi J, Lyu J, Tian F, Yang M (2017) A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens Bioelectron 93:182–188

    Article  CAS  Google Scholar 

  12. Arya SK, Wang KY, Wong CC, Rahman ARA (2013) Anti-EpCAM modified LC-SPDP monolayer on gold microelectrode based electrochemical biosensor for MCF-7 cells detection. Biosens Bioelectron 41:446–451

    Article  CAS  Google Scholar 

  13. Shiddiky MJA, Rauf S, Kithva PH, Trau M (2012) Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosens Bioelectron 35:251–257

    Article  CAS  Google Scholar 

  14. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  PubMed  Google Scholar 

  15. Soni A, Pandey CM, Solanki S, Kotnala RK, Sumana G (2018) Electrochemical genosensor based on template assisted synthesized polyaniline nanotubes for chronic myelogenous leukemia detection. Talanta 187:379–389

    Article  CAS  Google Scholar 

  16. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  17. Hussein KH, Abdelhamid HN, Zou X, Woo H-M (2019) Ultrasonicated graphene oxide enhances bone and skin wound regeneration. Mater Sci Eng C 94:484–492

    Article  CAS  Google Scholar 

  18. Hallaj R, Haghighi N (2017) Photoelectrochemical amperometric sensing of cyanide using a glassy carbon electrode modified with graphene oxide and titanium dioxide nanoparticles. Microchim Acta 184:3581–3590

    Article  CAS  Google Scholar 

  19. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  20. Ashour RM, Abdelhamid HN, Abdel-Magied AF, Abdel-Khalek AA, Ali MM, Uheida A, Muhammed M, Zou X, Dutta J (2017) Rare earth ions adsorption onto graphene oxide nanosheets. Solvent Extr Ion Exch 35:91–103

    Article  CAS  Google Scholar 

  21. Jang HD, Kim SK, Chang H, Roh K-M, Choi J-W, Huang J (2012) A glucose biosensor based on TiO2–graphene composite. Biosens Bioelectron 38:184–188

    Article  CAS  PubMed  Google Scholar 

  22. Josephine DSR, Babu KJ, Gnana Kumar G, Sethuraman K (2017) Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric sensing of dopamine. Microchim Acta 184:781–790

    Article  CAS  Google Scholar 

  23. Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63

    Google Scholar 

  24. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956

    Article  CAS  Google Scholar 

  25. Pandey CM, Tiwari I, Singh VN, Sood K, Sumana G, Malhotra BD (2017) Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. Sens Actuators B Chem 238:1060–1069

    Article  CAS  Google Scholar 

  26. Srivastava S, Kumar V, Ali MA, Solanki PR, Srivastava A, Sumana G, Saxena PS, Joshi AG, Malhotra BD (2013) Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5:3043–3051

    Article  CAS  PubMed  Google Scholar 

  27. Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115:10694–10701

    Article  CAS  Google Scholar 

  28. Randviir EP, Banks CE (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods 5:1098–1115

    Article  CAS  Google Scholar 

  29. Randles JEB (1947) Kinetics of rapid electrode reactions. Discuss Faraday Soc 1:11–19

    Article  Google Scholar 

  30. Jorcin J-B, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479

    Article  CAS  Google Scholar 

  31. Xie Y, Chen A, Du D, Lin Y (2011) Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal Chim Acta 699:44–48

    Article  CAS  Google Scholar 

  32. Pandey CM, Sumana G, Tiwari I (2014) Copper oxide assisted cysteine hierarchical structures for immunosensor application. Appl Phys Lett 105:103706

    Article  Google Scholar 

  33. Tao L, Zhang K, Sun Y, Jin B, Zhang Z, Yang K (2012) Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells. Biosens Bioelectron 35:186–192

    Article  CAS  Google Scholar 

  34. Dowaidar M, Abdelhamid HN, Hällbrink M, Zou X, Langel Ü (2017) Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. BBA-Gen Subjects 1861:2334–2341

    Article  CAS  Google Scholar 

  35. Augustine S, Joshi AG, Yadav BK, Mehta A, Kumar P, Renugopalakrishanan V, Malhotra BD (2018) An emerging nanostructured molybdenum trioxide-based biocompatible sensor platform for breast cancer biomarker detection. MRS Commun 8:668–679

    Article  CAS  Google Scholar 

  36. Bravo K, Ortega FG, Messina GA, Sanz MI, Fernández-Baldo MA, Raba J (2017) Integrated bio-affinity nano-platform into a microfluidic immunosensor based on monoclonal bispecific trifunctional antibodies for the electrochemical determination of epithelial cancer biomarker. Clin Chim Acta 464:64–71

    Article  CAS  Google Scholar 

  37. Chen Q, Hu W, Shang B, Wei J, Chen L, Guo X, Ran F, Chen W, Ding X, Xu Y (2018) Ultrasensitive amperometric aptasensor for the epithelial cell adhesion molecule by using target-driven toehold-mediated DNA recycling amplification. Microchim Acta 185:202

    Article  Google Scholar 

Download references

Acknowledgements

C.M. Pandey acknowledges the Department of Science and Technology (DST), New Delhi, India, for DST-INSPIRE Faculty award (Grant No. DST/INSPIRE/04/2015/000932).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chandra Mouli Pandey or Devendra Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 413 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, O., Pandey, C.M. & Kumar, D. Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchim Acta 187, 275 (2020). https://doi.org/10.1007/s00604-020-04233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04233-7

Keywords

Navigation