Skip to main content
Log in

Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new and efficient assay is proposed for the photometric determination of Cr6+ by employing polyethylenimine-stabilized Ag nanoclusters (PEI-AgNCs) as an oxidoreductase mimic. Cr6+ with certain oxidicability is able to specifically react with 3,3′,5,5′-tetramethylbenzidine (TMB), giving a color change from colorless to blue indicating the presence of Cr6+. However, the redox kinetics is so slow that the sensitivity obtained for Cr6+ determination is very poor. It is interestingly found that PEI-AgNCs can act as an oxidoreductase-like nanozyme to significantly promote the sluggish reaction, making it possible to rapidly detect toxic Cr6+ with remarkably enhanced performance. With the use of PEI-AgNCs, fast and convenient determination of Cr6+ was realized, with a limit of detection as low as 1.1 μM. Additionally, the proposed assay exhibited excellent selectivity; other ions, including Cr3+, hardly affected the determination of Cr6+.

Polyethylenimine-stabilized silver nanoclusters (PEI-AgNCs) act as an oxidoreductase mimic to catalyze the redox reaction of Cr6+ and 3,3′,5,5′-tetramethylbenzidine (TMB), enabling the high-performance colorimetric determination of toxic Cr6+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  1. Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806

    Article  CAS  Google Scholar 

  2. Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  Google Scholar 

  3. Zhang JF, Li SL (2019) Sensors for detection of Cr(VI) in water: a review. Intern J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1675652

  4. Yilmaz E, Soylak M (2016) Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples. Talanta 160:680–685

    Article  CAS  Google Scholar 

  5. Ma JX, Wang Z, Li Q, Gai RY, Li XH (2014) On-line separation and preconcentration of hexavalent chromium on a novel mesoporous silica adsorbent with determination by solution-cathode glow discharge-atomic emission spectrometry. J Anal At Spectrom 29:2315–2322

    Article  CAS  Google Scholar 

  6. Zhuang YT, Chen S, Jiang R, Yu YL, Wang JH (2019) Ultrasensitive colorimetric chromium chemosensor based on dye color switching under the Cr(VI)-stimulated Au NPs catalytic activity. Anal Chem 91:5346–5353

    Article  CAS  Google Scholar 

  7. Mutuyimana FP, Liu JJ, Nsanzamahoro S, Na M, Chen HL, Chen XG (2019) Yellow-emissive carbon dots as a fluorescent probe for chromium(VI). Microchim Acta 186:163

    Article  Google Scholar 

  8. Alex SA, Chandrasekaran N, Mukherjee A (2018) Using gold nanorod-based colorimetric sensor for determining chromium in biological samples. J Mol Liq 264:119–126

    Article  CAS  Google Scholar 

  9. Guo JF, Hou CJ, Yang M, Huo DQ, Li JJ, Fa HB, Luo HB, Yang P (2016) Colorimetric sensing of chromium(VI) ions in aqueous solution based on the leaching of protein-stabled gold nanoparticles. Anal Methods 8:5526–5532

    Article  CAS  Google Scholar 

  10. Zhang XH, Liu W, Li XM, Zhang Z, Shan DL, Xia H, Zhang ST, Lu XQ (2018) Ultrahigh selective colorimetric quantification of chromium(VI) ions based on gold amalgam catalyst oxidoreductase-like activity in water. Anal Chem 90:14309–14315

    Article  CAS  Google Scholar 

  11. Li S, Wei T, Ren GJ, Chai F, Wu HB, Qu FY (2017) Gold nanoparticles based colorimetric probe for Cr(III) and Cr(VI) detection. Colloids Surf A Physicochem Eng Asp 535:215–224

    Article  CAS  Google Scholar 

  12. Guo JF, Huo DQ, Yang M, Hou CJ, Li JJ, Fa HB, Luo HB, Yang P (2016) Colorimetric detection of Cr(VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta 161:819–825

    Article  CAS  Google Scholar 

  13. Rong MC, Lin LP, Song XH, Wang YR, Zhong YX, Yan JW, Feng YF, Zeng XY, Chen X (2015) Fluorescence sensing of chromium(VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron 68:210–217

    Article  CAS  Google Scholar 

  14. Huang S, Qiu HN, Zhu FW, Lu SY, Xiao Q (2015) Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid. Microchim Acta 182:1723–1731

    Article  CAS  Google Scholar 

  15. Gong XJ, Liu Y, Yang ZH, Shuang SM, Zhang ZY, Dong C (2017) An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta 968:85–96

    Article  CAS  Google Scholar 

  16. Zhang JR, Zeng AL, Luo HQ, Li NB (2016) Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution. J Hazard Mater 304:66–72

    Article  CAS  Google Scholar 

  17. Zhu LJ, Peng X, Li HT, Zhang YY, Yao SZ (2017) On-off-on fluorescent silicon nanoparticles for recognition of chromium(VI) and hydrogen sulfide based on the inner filter effect. Sens Actuators B Chem 238:196–203

    Article  CAS  Google Scholar 

  18. Korshoj LE, Zaitouna AJ, Lai RY (2015) Methylene blue-mediated electrocatalytic detection of hexavalent chromium. Anal Chem 87:2560–2564

    Article  CAS  Google Scholar 

  19. Huang S, Yang EL, Yao JD, Chu X, Liu Y, Xiao Q (2019) Nitrogen, phosphorus and sulfur tri-doped carbon dots are specific and sensitive fluorescent probes for determination of chromium(VI) in water samples and in living cells. Microchim Acta 186:851

    Article  CAS  Google Scholar 

  20. Jin W, Wu GS, Chen AC (2014) Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays. Analyst 139:235–241

    Article  CAS  Google Scholar 

  21. Li JJ, Wang YX, Jiao YF, Jia R, Chen Z (2017) Core-shell Cu@Au nanoparticles as an optical probe for ultrasensitive detection of chromium(VI) via an etching effect. Microchim Acta 184:3817–3823

    Article  CAS  Google Scholar 

  22. Joshi P, Sarkar S, Soni SK, Kumar D (2016) Label-free colorimetric detection of Cr(VI) in aqueous systems based on flower shaped silver nanoparticles. Polyhedron 120:142–149

    Article  CAS  Google Scholar 

  23. Dong C, Wu GH, Wang ZQ, Ren WZ, Zhang YJ, Shen ZY, Li TH, Wu AG (2016) Selective colorimetric detection of Cr(III) and Cr(VI) using gallic acid capped gold nanoparticles. Dalton Trans 45:8347–8354

    Article  CAS  Google Scholar 

  24. Niu XH, He YF, Li X, Zhao HL, Pan JM, Qiu FX, Lan MB (2019) A peroxidase-mimicking nanosensor with Hg2+-triggered enzymatic activity of cysteine-decorated ferromagnetic particles for ultrasensitive Hg2+ detection in environmental and biological fluids. Sens Actuators B Chem 281:445–452

    Article  CAS  Google Scholar 

  25. Li X, Wang LJ, Du D, Ni L, Pan JM, Niu XH (2019) Emerging applications of nanozymes in environmental analysis: opportunities and trends. Trends Anal Chem 120:115653

    Article  CAS  Google Scholar 

  26. Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  Google Scholar 

  27. Huang YY, Ren JS, Qu XG (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412

    Article  CAS  Google Scholar 

  28. Liang MM, Yan XY (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52:2190–2200

    Article  CAS  Google Scholar 

  29. Li ZX, Feng KZ, Zhang W, Ma M, Gu N, Zhang Y (2018) Catalytic mechanism and application of nanozymes. Chin Sci Bull 63:2128–2139

    Article  Google Scholar 

  30. Xu XC, Wang LJ, Zou XB, Wu SW, Pan JM, Li X, Niu XH (2019) Highly sensitive colorimetric detection of arsenite based on reassembly-induced oxidase-mimicking activity inhibition of dithiothreitol-capped Pd nanozyme. Sens Actuators B Chem 298:126876

    Article  CAS  Google Scholar 

  31. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47:11939–11941

    Article  CAS  Google Scholar 

  32. Zhang ST, Zhang DX, Zhang XH, Shang DH, Xue ZH, Shan DL, Lu XQ (2017) Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids. Anal Chem 89:3538–3544

    Article  CAS  Google Scholar 

  33. Li CR, Hai J, Fan L, Li SL, Wang BD, Yang ZY (2019) Amplified colorimetric detection of Ag+ based on Ag+-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sens Actuators B Chem 284:213–219

    Article  CAS  Google Scholar 

  34. Choi K, Lee S, Park JO, Park JA, Cho SH, Lee SY, Lee JH, Choi JW (2018) Chromium removal from aqueous solution by a PEI-silica nanocomposite. Sci Rep 8:1438

    Article  Google Scholar 

  35. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  36. Niu XH, He YF, Pan JM, Li X, Qiu FX, Yan YS, Shi LB, Zhao HL, Lan MB (2016) Uncapped nanobranch-based CuS clews used as an efficient peroxidase mimic enable the visual detection of hydrogen peroxide and glucose with fast response. Anal Chim Acta 947:42–49

    Article  CAS  Google Scholar 

  37. Song HW, Li ZB, Peng YX, Li X, Xu XC, Pan JM, Niu XH (2019) Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity. Analyst 144:2416–2422

    Article  CAS  Google Scholar 

  38. Vernekar AA, Das T, Ghosh S, Mugesh G (2016) A remarkably efficient MnFe2O4-based oxidase nanozyme. Chem Asian J 11:72–76

    Article  CAS  Google Scholar 

  39. Yang HK, Xiao JY, Su L, Feng T, Lv QY, Zhang XJ (2017) Oxidase-mimicking activity of the nitrogen-doped Fe3C@C composites. Chem Commun 53:3882–3885

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported in part by the Social Development Fund of Zhenjiang City (No. SH2018011). Xiangheng Niu was supported by the Cultivation Project for Excellent Young Teachers of Jiangsu University (No. 4111310004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinxian Peng or Xiangheng Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no completing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Q., Li, X., Peng, Y. et al. Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Microchim Acta 187, 263 (2020). https://doi.org/10.1007/s00604-020-04232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04232-8

Keywords

Navigation