Skip to main content
Log in

Colorimetric determination of polyphenols via a gold nanoseeds–decorated polydopamine film

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A polystyrene ELISA plate (EP) modified with a thin film based on gold nanoseeds (AuSDs) assembled onto polydopamine (PDA) is proposed. The nanodecorated film (PDA@AuSD) allows to evaluate the polyphenols antioxidant capacity (AOC) through a colorimetric approach based on a seed-mediated growth strategy. Polyphenols, in the presence of the nanodecorated (PDA@AuSD) surfaces are able to drive an increase in size of the AuSDs according to their AOC; this produces an increase of the localized surface plasmon resonance (LSPR; maximum at λ ~ 550 nm) that is taken as analytical signal. The PDA@AuSD EP manufacturing shows good intraplates repeatability (RSD ≤ 6.6%, n = 96 wells) and interplates reproducibility (RSD ≤ 7.4%, n = 748 wells), resulting stable for 1 year. The AuSDs growth kinetic has been studied using 11 polyphenols belonging to different chemical classes and 4 different food samples. The PDA@AuSD film is able to return quantitative information on the AOC of food polyphenols. Good repeatability (RSD ≤ 5.7%, n = 12 EP wells) and reproducibility (RSD ≤ 8.1%, n = 12 EP wells) was achieved, with acceptable linear correlation coefficients (R2 ≥ 0.990) and useful limits of detection (LODs ≤ 2.5 10−5 mol L−1). The samples analyzed with the PDA@AuSD device have been successfully ordered according to their AOC in agreement with conventional optical methods. The PDA@AuSD plate allows multiple measurements (96 wells per EP) with a one-step strategy, overcoming the limitations related to the use of colloidal nanoparticles; in addition, since absorbance is measured after washing, it is not affected by sample color or turbidity.

Schematic representation of ELISA plate (EP) modified with polydopamine (PDA) film decorated with gold nanoseeds (AuSD). The colorimetric assay, to evaluate the antioxidant capacity, is based on the AuSD growth mediated by polyphenols, resulting in absorbance increase at 550 nm (ΔAbs550), which is employed as analytical signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang CC, Chen W (2018) A SERS method with attomolar sensitivity: a case study with the flavonoid catechin. Microchim Acta 180:120–128. https://doi.org/10.1007/s00604-017-2662-9

    Article  CAS  Google Scholar 

  2. Dela Pelle F, Compagnone D (2018) Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors 18:462. https://doi.org/10.3390/s18020462

    Article  CAS  Google Scholar 

  3. Tonello NV, D’Eramo F, Marioli JM, Crevillen AG, Escarpa A (2018) Extraction-free colorimetric determination of thymol and carvacrol isomers in essential oils by pH-dependent formation of gold nanoparticles. Microchim Acta 185:2–9. https://doi.org/10.1007/s00604-018-2893-4

    Article  CAS  Google Scholar 

  4. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43. https://doi.org/10.1016/j.aca.2012.08.043

    Article  CAS  Google Scholar 

  5. Della Pelle F, Scroccarello A, Scarano S, Compagnone D (2018) Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Anal Chim Acta 1051:129–137Della Pelle F, Scroccarello A, Scarano S, Compagnone D (2018) Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Anal Chim Acta 1051:129–137

  6. Vilela D, Castañeda R, González MC, Mendoza S, Escarpa A (2015) Fast and reliable determination of antioxidant capacity based on the formation of gold nanoparticles. Microchim Acta 182:105–111. https://doi.org/10.1007/s00604-014-1306-6

    Article  CAS  Google Scholar 

  7. Della Pelle F, González MC, Sergi M et al (2015) Gold nanoparticles-based extraction-free colorimetric assay in organic media: an optical index for determination of total polyphenols in fat-rich samples. Anal Chem 87:6905–6911. https://doi.org/10.1021/acs.analchem.5b01489

    Article  CAS  Google Scholar 

  8. Della Pelle F, Scroccarello A, Sergi M, Mascini M, del Carlo M, Compagnone D (2018) Simple and rapid silver nanoparticles based antioxidant capacity assays: reactivity study for phenolic compounds. Food Chem 256:342–349. https://doi.org/10.1016/j.foodchem.2018.02.141

    Article  CAS  Google Scholar 

  9. Della Pelle F, Vilela D, González MC, Lo Sterzo C, Compagnone D, del Carlo M, Escarpa A (2015) Antioxidant capacity index based on gold nanoparticles formation. Application to extra virgin olive oil samples. Food Chem 178:70–75. https://doi.org/10.1016/j.foodchem.2015.01.045

    Article  CAS  Google Scholar 

  10. Kailasa SK, Koduru JR, Desai ML et al (2018) Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. TrAC Trends Anal Chem 105:106–120. https://doi.org/10.1016/j.trac.2018.05.004

    Article  CAS  Google Scholar 

  11. Kasibabu BSB, Bhamore JR, D’souza SL, Kailasa SK (2015) Dicoumarol assisted synthesis of water dispersible gold nanoparticles for colorimetric sensing of cysteine and lysozyme in biofluids. RSC Adv 5:39182–39191. https://doi.org/10.1039/c5ra06814b

    Article  CAS  Google Scholar 

  12. Rawat KA, Kailasa SK (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchim Acta 181:1917–1929. https://doi.org/10.1007/s00604-014-1294-6

    Article  CAS  Google Scholar 

  13. Özyürek M, Güngör N, Baki S et al (2012) Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal Chem 84:8052–8059. https://doi.org/10.1021/ac301925b

    Article  CAS  Google Scholar 

  14. Teerasong S, Jinnarak A, Chaneam S, Wilairat P, Nacapricha D (2017) Poly (vinyl alcohol) capped silver nanoparticles for antioxidant assay based on seed-mediated nanoparticle growth. Talanta 170:193–198. https://doi.org/10.1016/j.talanta.2017.04.009

    Article  CAS  Google Scholar 

  15. Rostami S, Mehdinia A, Jabbari A (2017) Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid. Spectrochim Acta - Part A Mol Biomol Spectrosc 180:204–210. https://doi.org/10.1016/j.saa.2017.03.020

    Article  CAS  Google Scholar 

  16. Palladino P, Bettazzi F, Scarano S (2019) Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio)analysis. Anal Bioanal Chem 411:4327–4338. https://doi.org/10.1007/s00216-019-01665-w

    Article  CAS  Google Scholar 

  17. Bernsmann F, Ball V, Ponche A, et al (2011) Dopamine - melanin film deposition depends on the used oxidant and buffer solution. 2819–2825

  18. Ball V, Del Frari D, Toniazzo V, Ruch D (2012) Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism. J Colloid Interface Sci 386:366–372. https://doi.org/10.1016/j.jcis.2012.07.030

    Article  CAS  Google Scholar 

  19. Ryu JH, Messersmith PB, Lee H (2018) Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces 10:7523–7540. https://doi.org/10.1021/acsami.7b19865

    Article  CAS  Google Scholar 

  20. Ding YH, Floren M, Tan W (2016) Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and Biotribology 2:121–136. https://doi.org/10.1016/j.bsbt.2016.11.001

    Article  CAS  Google Scholar 

  21. Teo PS, Rameshkumar P, Pandikumar A, Jiang ZT, Altarawneh M, Huang NM (2017) Colorimetric and visual dopamine assay based on the use of gold nanorods. Microchim Acta 184:4125–4132. https://doi.org/10.1007/s00604-017-2435-5

    Article  CAS  Google Scholar 

  22. Ma Y, Niu H, Cai Y (2011) One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk:4192–4196. https://doi.org/10.1039/c1an15327g

  23. Della Pelle F, Daniel R, Scroccarello A et al (2019) High-performance carbon black/molybdenum disulfide nanohybrid sensor for cocoa catechins determination using an extraction-free approach. Sensors Actuators B Chem 296:126651. https://doi.org/10.1016/j.snb.2019.126651

    Article  CAS  Google Scholar 

  24. Della Pelle F, Blandón-Naranjo L, Alzate M, et al (2020) Cocoa powder and catechins as natural mediators to modify carbon-black based screen-printed electrodes. Application to free and total glutathione detection in blood. Talanta 207: 120349. https://doi.org/10.1016/j.talanta.2019.120349

  25. Zhou Y, Lin W, Yang F et al (2014) Insights into formation kinetics of gold nanoparticles using the classical JMAK model. Chem Phys 441:23–29. https://doi.org/10.1016/j.chemphys.2014.07.001

    Article  CAS  Google Scholar 

  26. Njoki PN, Luo J, Kamundi MM, Lim S, Zhong CJ (2010) Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles. Langmuir 26:13622–13629. https://doi.org/10.1021/la1019058

    Article  CAS  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  28. Jelinek HF, Miloševi NT, Karperien A, Krstonoši B (2013) Box-counting and multifractal analysis in neuronal and glial classification. Adv Intell Control Syst Comput Sci AISC 187:177–189

    Google Scholar 

  29. Filho Barros MN, Sobreira FJA (2014) Accuracy of lacunarity algorithms in texture classification of accuracy of lacunarity algorithms in texture classification of high spatial resolution images from urban areas. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII:

  30. Karperien A (2014) FracLac for ImageJ. https://doi.org/10.13140/2.1.4775.8402

  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  32. Scarano S, Pascale E, Palladino P et al (2018) Determination of fermentable sugars in beer wort by gold nanoparticles@polydopamine: a layer-by-layer approach for localized surface plasmon resonance measurements at fixed wavelength. Talanta 183:24–32. https://doi.org/10.1016/j.talanta.2018.02.044

    Article  CAS  Google Scholar 

  33. Jha PK, Halada GP (2011) The catalytic role of uranyl in formation of polycatechol complexes. Chem Cent J 5:1–7. https://doi.org/10.1186/1752-153X-5-12

    Article  CAS  Google Scholar 

  34. Della Pelle F, Di Battista R, Vázquez L et al (2017) Press-transferred carbon black nanoparticles for class-selective antioxidant electrochemical detection. Appl Mater Today 9:29–36. https://doi.org/10.1016/j.apmt.2017.04.012

    Article  Google Scholar 

  35. Rojas D, Della Pelle F, Carlo D, Michele Fratini E, Escarpa A, Compagnone D (2019) Nanohybrid carbon black-molybdenum disulfide transducers for preconcentration-free voltammetric detection of the olive oil o-diphenols hydroxytyrosol and oleuropein. Microchim Acta 186:363. https://doi.org/10.1007/s00604-019-3418-5

    Article  CAS  Google Scholar 

  36. Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2:21. https://doi.org/10.4103/2229-5186.79345

    Article  Google Scholar 

  37. Scroccarello A, Della Pelle F, Neri LN, Pittia P, Compagnone D (2019) Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples. Food Res Int 119:359–368. https://doi.org/10.1016/j.foodres.2019.02.006

    Article  CAS  Google Scholar 

Download references

Funding

FDP thanks the Ministry of Education, University and Research (MIUR), and the European Social Fund (ESF) for the PON R&I 2014-2020 program, action 1.2 “AIM: Attraction and International Mobility” (AIM1894039-3). EF and GF kindly acknowledge partial financial support from CSGI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio Della Pelle or Dario Compagnone.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scroccarello, A., Della Pelle, F., Fratini, E. et al. Colorimetric determination of polyphenols via a gold nanoseeds–decorated polydopamine film. Microchim Acta 187, 267 (2020). https://doi.org/10.1007/s00604-020-04228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04228-4

Keywords

Navigation