Skip to main content
Log in

Aggregation-based determination of mercury(II) using DNA-modified single gold nanoparticle, T-Hg(II)-T interaction, and single-particle ICP-MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive assay is described for the detection and determination of Hg2+(aq) in water samples based on single-particle inductively-coupled plasma/mass spectrometry (spICP-MS). In the presence of Hg2+(aq), AuNPs modified with a segment of single-stranded DNA aggregate due to the formation of the well-known thymine (T)-Hg2+-T complex. Single particle (sp) ICP-MS is used quantify the degree of aggregation by the overall decrease in number of detected AuNPs or NP aggregates. Compared with most other Hg2+ assays that use the same principle of aggregation-dispersion with DNA modified AuNPs, this method has a much lower detection limit of (0.031 ng L−1, 155 fM) and a wider (10,000-fold) linear range (up to 1 μg L−1). The method also showed good practical potential because of its minimal interference from the water sample matrix.

Schematic representation of Hg2+ determination by using modified AuNP probes measured by spICP-MS. AuNPs pulses detected in ICP-MS is relative to the aggregation status of AuNPs based on thymine-Hg2+-thymine interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. da Silva AD, Barbosa FJ, ScaranoWR (2012) Oral exposure to methylmercury modifies the prostatic microenvironment in adult rats. Int J Exp Pathol 93: 354–360

  2. Schneider L, Peleja RP, Kluczkovski A, Freire GM, Marioni B, Vogt RC, Da Silveira R (2012) Mercury concentration in the spectacled caiman and black caiman (alligatoridae) of the amazon: implications for human health. Arch Environ Contam Toxicol 63:270–279

    Article  CAS  Google Scholar 

  3. Yu T, Zhang T-T, Zhao W, Xu J-J, Chen H-Y (2017) A colorimetric/fluorescent dual-mode sensor for ultra-sensitive detection of Hg2+. Talanta 165:570–576

    Article  CAS  Google Scholar 

  4. Rebelo FM, Caldas ED (2016) Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res 151:671–688

    Article  CAS  Google Scholar 

  5. Lamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, Lam PJ, Heimbürger L-E, Rijkenberg MJA, Saito MA (2014) A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512:65

    Article  CAS  Google Scholar 

  6. Farina M, Avila DS, da Rocha JBT, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–594

    Article  CAS  Google Scholar 

  7. Chen S, Liu D, Wang Z, Sun X, Cui D, Chen X (2013) Picomolar detection of mercuric ions by means of gold–silver core–shell nanorods. Nanoscale 5:6731–6735

    Article  CAS  Google Scholar 

  8. Ou L, Chen C, Chen L, Wang H, Yang T, Xie H, Tong Y, Hu D, Zhang W, Wang X (2015) Low-level prenatal mercury exposure in North China: an exploratory study of anthropometric effects. Environ Sci Technol 49:6899–6908

    Article  CAS  Google Scholar 

  9. Buck KA, Varian-Ramos CW, Cristol DA, Swaddle JP (2016) Blood mercury levels of zebra finches are heritable: implications for the evolution of mercury resistance. PLoS One 11:e0162440

    Article  Google Scholar 

  10. Manna B, Raj CR (2018) Nanostructured sulfur-doped porous reduced graphene oxide for the ultrasensitive electrochemical detection and efficient removal of Hg(II). ACS Sustain Chem Eng 6:6175–6182

    Article  CAS  Google Scholar 

  11. Niece BK, Hauri JF (2013) Determination of mercury in fish: a low-cost implementation of cold-vapor atomic absorbance for the undergraduate environmental chemistry laboratory. J Chem Educ 90:487–489

    Article  CAS  Google Scholar 

  12. Bank MS (2012) Mercury in the environment: pattern and process. University of California Press, Berkeley

    Book  Google Scholar 

  13. Tan D, He Y, Xing X, Zhao Y, Tang H, Pang D (2013) Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta 113:26–30

    Article  CAS  Google Scholar 

  14. Wang H, Wang Y, Jin J, Yang R (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80:9021–9028

    Article  CAS  Google Scholar 

  15. Bagheri H, Naderi M (2009) Immersed single-drop microextraction–electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples. J Hazard Mater 165:353–358

    Article  CAS  Google Scholar 

  16. Pierce DT, Zhao JX (2010) Trace analysis with Nanomaterials. Wiley, Weinheim

    Book  Google Scholar 

  17. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  18. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  19. Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491

    Article  CAS  Google Scholar 

  20. Li RLJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Amer Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  21. Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun (Camb) 2242-2244

  22. Du J, Zhu B, Chen X (2013) Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 9:4104–4111

    Article  CAS  Google Scholar 

  23. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed Eng 47:3927–3931

    Article  CAS  Google Scholar 

  24. Da Q, Gu Y, Peng X, Zhang L, Du S (2018) Colorimetric and visual detection of mercury(II) based on the suppression of the interaction of dithiothreitol with agar-stabilized silver-coated gold nanoparticles. Mikrochim Acta 185:357

    Article  Google Scholar 

  25. Montano MD, Olesik JW, Barber AG, Challis K, Ranville JF (2016) Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal Bioanal Chem 408:5053–5074

    Article  CAS  Google Scholar 

  26. Degueldre C, Favarger PY (2003) Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids and Surf A: Physicochem Eng Asp 217:137–142

    Article  CAS  Google Scholar 

  27. Laborda F, Bolea E, Jimenez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278

    Article  CAS  Google Scholar 

  28. Mohini M, Kapil K, Durgadas A, Ravindra KR (2017) ICP-MS: analytical method for identification and detection of elemental impurities. Curr Drug Discov Technol 14:106–120

    Article  Google Scholar 

  29. Han G, Xing Z, Dong Y, Zhang S, Zhang X (2011) One-step homogeneous DNA assay with single-nanoparticle detection. Angew Chem Int Ed Eng 50:3462–3465

    Article  CAS  Google Scholar 

  30. Deka J, Mech R, Ianeselli L, Amenitsch H, Cacho-Nerin F, Parisse P, Casalis L (2015) Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density. ACS Appl Mater Interfaces 7:7033–7040

    Article  CAS  Google Scholar 

  31. Li M, Zhou X, Ding W, Guo S, Wu N (2013) Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens Bioelectron 41:889–893

    Article  Google Scholar 

  32. Xie Y (2018) Colorimetric determination of Hg(II) via the gold amalgam induced deaggregation of gold nanoparticles. Mikrochim Acta 185:351

    Article  Google Scholar 

  33. Wang F, Sun J, Lu Y, Zhang X, Song P, Liu Y (2018) Dispersion-aggregation-dispersion colorimetric detection for mercury ions based on an assembly of gold nanoparticles and carbon nanodots. Analyst 143:4741–4746

    Article  CAS  Google Scholar 

  34. Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014) Detection of mercury(ii) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849

    Article  CAS  Google Scholar 

  35. Yang L, Yun W, Chen Y, Wu H, Liu X, Fu M, Huang Y (2017) Ultrasensitive colorimetric and fluorometric detection of Hg(II) based on the use of gold nanoparticles and a catalytic hairpin assembly. Microchim Acta 184:4741–4747

    Article  CAS  Google Scholar 

  36. Zhu Y, Cai Y, Zhu Y, Zheng L, Ding J, Quan Y, Wang L, Qi B (2015) Highly sensitive colorimetric sensor for Hg(2+) detection based on cationic polymer/DNA interaction. Biosens Bioelectron 69:174–178

    Article  CAS  Google Scholar 

  37. Jia S, Bian C, Sun J, Tong J, Xia S (2018) A wavelength-modulated localized surface plasmon resonance (lspr) optical fiber sensor for sensitive detection of mercury(ii) ion by gold nanoparticles-DNA conjugates. Biosens Bioelectron 114:15–21

    Article  CAS  Google Scholar 

  38. Song X, Wang Y, Liu S, Zhang X, Wang H, Wang J, Huang J (2019) Colorimetric and visual mercury(ii) assay based on target-induced cyclic enzymatic amplification, thymine-Hg(II)-thymine interaction, and aggregation of gold nanoparticles. Mikrochim Acta 186:105

    Article  Google Scholar 

  39. Achadu OJ, Revaprasadu N (2018) Microwave-assisted synthesis of thymine-functionalized graphitic carbon nitride quantum dots as a fluorescent nanoprobe for mercury(II). Mikrochim Acta 185:461

    Article  Google Scholar 

  40. Gao F, Zhang T, Chu Y, Wang Q, Song J, Qiu W, Lin Z (2018) Ultrasensitive impedimetric mercury(II) sensor based on thymine-Hg(II)-thymine interaction and subsequent disintegration of multiple sandwich-structured DNA chains. Mikrochim Acta 185:555

    Article  Google Scholar 

  41. Jin H, Zhang M, Wei M, Cheng JH (2019) A voltammetric biosensor for mercury(II) using reduced graphene oxide@gold nanorods and thymine-Hg(II)-thymine interaction. Mikrochim Acta 186:264

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF grant CHE 1709160 (J.X.Z.), UND Applied Research to Address the State’s Critical Needs Initiative program (X.W.) and the NIH grant 5P20GM103442-18 (D.T.P), The authors acknowledge the use of the Edward C. Carlson Imaging and Image Analysis Core Facility which is supported in part by NIH grant 1P20GM113123 and P20GM103442 and also acknowledge use of the North Dakota INBRE Metal Analysis Core Facility, which is supported in part by NIH grant 5P20GM103442-18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David T. Pierce or Julia Xiaojun Zhao.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Han, J., Wu, X. et al. Aggregation-based determination of mercury(II) using DNA-modified single gold nanoparticle, T-Hg(II)-T interaction, and single-particle ICP-MS. Microchim Acta 187, 56 (2020). https://doi.org/10.1007/s00604-019-4057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4057-6

Keywords

Navigation