Skip to main content
Log in

Signal amplification in immunoassays by using noble metal nanoparticles: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 147 references) summarizes the state of the art in methods for signal amplification in immunoassays by using noble metal nanoparticles (MeNPs). Following an introduction into the field, a first large section covers MeNPs as signal tracers. The next sections describes the use of MeNPs as carriers for biomolecules, and of doped, decorated or functionalized MeNPs. A next large section covers MeNPs as used in aggregation-based assays that result in a change of color or dynamic light scattering (DLS). This is followed by a discussion of MeNPs that undergo etching, size reduction, or growth and thereby change color and DLS, with subsections on methods based on etching, particle growth or particle formation. We then rview methods where MeNPs acts as catalysts (enzyme mimics), with subsections on MeNPs and on doped or composed MeNPs. A final large section discusses the synergies of MeNPs or multiple signal amplification strategies in immunoassays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends.

Noble metal nanoparticles have been widely used as essential components of signal amplification strategies to enhance the sensitivity of the immunoassays. This review summarizes various signal amplification strategies using metal NPs serving as (a) signal tracers, (b) carriers, (c) aggregators, (d) enzyme mimics, (e) in growth or etching of NPs, and (f) in synergistic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wei J, Qileng A, Yan Y, Lei H, Zhang S, Liu W, Liu Y (2017) A novel visible-light driven photoelectrochemical immunosensor based on multi-amplification strategy for ultrasensitive detection of microcystin-LR. Anal Chim Acta 994:82–91

    Article  CAS  PubMed  Google Scholar 

  2. Sun Q, Luo J, Zhang L, Zhang Z, Le T (2018) Development of monoclonal antibody-based ultrasensitive enzyme-linked immunosorbent assay and fluorescence-linked immunosorbent assay for 1-aminohydantoin detection in aquatic animals. J Pharm Biomed Anal 147:417–424

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Niu C, Li T, Wan Y, Zhou Y, Wang H, Yuan R, Liao P (2018) Ultrasensitive electrochemiluminescence biosensor for detection of laminin based on DNA dendrimer-carried luminophore and DNA nanomachine-mediated target recycling amplification. Biosens Bioelectron 101:206–212

    Article  CAS  PubMed  Google Scholar 

  4. Jiang W, Wu L, Duan J, Yin H, Ai S (2018) Ultrasensitive electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on Fe3O4@SiO2 nanoparticles and PAMAM dendrimers. Biosens Bioelectron 99:660–666

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Gao P, Yan T, Li R, Xu R, Zhang Y, Du B, Wei Q (2018) Ultrasensitive photoelectrochemical immunosensor for insulin detection based on dual inhibition effect of CuS-SiO 2 composite on CdS sensitized C-TiO 2. Sensors Actuators B Chem 258:1–9

    Article  CAS  Google Scholar 

  6. Qin X, Xu A, Liu L, Sui Y, Li Y, Tan Y, Chen C, Xie Q (2017) Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosens Bioelectron 91:321–327

    Article  CAS  PubMed  Google Scholar 

  7. Jalal UM, Jin GJ, Eom KS, Kim MH, Shim JS (2018) On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains. Bioelectrochemistry 122:221–226

    Article  CAS  PubMed  Google Scholar 

  8. Cui L, Li Y, Lu M, Tang B, Zhang CY (2018) An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification. Biosens Bioelectron 99:1–7

    Article  CAS  PubMed  Google Scholar 

  9. Liu L, Chang Y, Xia N, Peng P, Zhang L, Jiang M, Zhang J, Liu L (2017) Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Biosens Bioelectron 94:235–242

    Article  CAS  PubMed  Google Scholar 

  10. Zhou J, Tang J, Chen G, Tang D (2014) Layer-by-layer multienzyme assembly for highly sensitive electrochemical immunoassay based on tyramine signal amplification strategy. Biosens Bioelectron 54:323–328

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Sun G, Yang H, Yu J, Yan M, Song X (2016) Multifunctional reduced graphene oxide trigged chemiluminescence resonance energy transfer: Novel signal amplification strategy for photoelectrochemical immunoassay of squamous cell carcinoma antigen. Biosens Bioelectron 79:55–62

    Article  CAS  PubMed  Google Scholar 

  12. Wang HY, Qi CL, He WH, Wang MH, Jiang WJ, Yin HS, Ai SY (2018) A sensitive photoelectrochemical immunoassay of N6-methyladenosine based on dual-signal amplification strategy: Ru doped in SiO2 nanosphere and carboxylated g-C3N4. Biosens Bioelectron 99:281–288

    Article  CAS  PubMed  Google Scholar 

  13. Feng J, Li Y, Gao Z, Lv H, Zhang X, Fan D, Wei Q (2018) Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosens Bioelectron 99:14–20

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Guo W, Wang Z, Ke H, Zhao W, Zhang A, Huang C, Jia N (2017) A sandwich electrochemiluminescence immunosensor for highly sensitive detection of alpha fetal protein based on MoS 2 -PEI-Au nanocomposites and Au@BSA core/shell nanoparticles. Sensors Actuators B Chem 253:470–477

    Article  CAS  Google Scholar 

  15. Tang Z, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C (2018) A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@AuNPs nanocomposites and a novel AuPt-methylene blue nanorod. Biosens Bioelectron 101:253–259

    Article  CAS  PubMed  Google Scholar 

  16. Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 6:491–506

    Article  CAS  Google Scholar 

  17. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xia Y (2016) Optical sensing and biosensing based on non-spherical noble metal nanoparticles. Anal Bioanal Chem 408:2813–2825

    Article  CAS  PubMed  Google Scholar 

  19. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  PubMed  Google Scholar 

  20. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vilela D, Gonzalez MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43

    Article  CAS  PubMed  Google Scholar 

  22. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baryeh K, Takalkar S, Lund M, Liu G (2017) Development of quantitative immunochromatographic assay for rapid and sensitive detection of carbohydrate antigen 19-9 (CA 19-9) in human plasma. J Pharm Biomed Anal 146:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao M, Fu Q, Shen H, Chen Y, Xiao W, Yan D, Tang X, Zhong Z, Tang Y (2018) A turn-on competitive immunochromatographic strips integrated with quantum dots and gold nano-stars for cadmium ion detection. Talanta 178:644–649

    Article  CAS  PubMed  Google Scholar 

  25. Wen-de W, Min L, Ming C, Li-Ping L, Rui W, Hai-Lan C, Fu-Yan C, Qiang M, Wan-Wen L, Han-Zhong C (2017) Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia. Biosens Bioelectron 91:66–69

    Article  PubMed  CAS  Google Scholar 

  26. Lee D, Kim YT, Lee JW, Kim DH, Seo TS (2016) An integrated direct loop-mediated isothermal amplification microdevice incorporated with an immunochromatographic strip for bacteria detection in human whole blood and milk without a sample preparation step. Biosens Bioelectron 79:273–279

    Article  CAS  PubMed  Google Scholar 

  27. Bu T, Huang Q, Yan L, Huang L, Zhang M, Yang Q, Yang B, Wang J, Zhang D (2018) Ultra technically-simple and sensitive detection for Salmonella Enteritidis by immunochromatographic assay based on gold growth. Food Control 84:536–543

    Article  CAS  Google Scholar 

  28. Choi DH, Lee SK, Oh YK, Bae BW, Lee SD, Kim S, Shin YB, Kim MG (2010) A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron 25:1999–2002

    Article  CAS  PubMed  Google Scholar 

  29. Fang Q, Wang L, Cheng Q, Cai J, Wang Y, Yang M, Hua X, Liu F (2015) A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal Chim Acta 881:82–89

    Article  CAS  PubMed  Google Scholar 

  30. Jia CP, Zhong XQ, Hua B, Liu MY, Jing FX, Lou XH, Yao SH, Xiang JQ, Jin QH, Zhao JL (2009) Nano-ELISA for highly sensitive protein detection. Biosens Bioelectron 24:2836–2841

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Han J, Gao H, Li C, Fu Z (2012) Protein functionalized titania particle as a nanocarrier in a multiple signal antibody amplification strategy for ultrasensitive chemiluminescent immunoassay. Talanta 88:765–768

    Article  CAS  PubMed  Google Scholar 

  32. Shi M, Zhao S, Huang Y, Zhao L, Liu YM (2014) Signal amplification in capillary electrophoresis based chemiluminescent immunoassays by using an antibody-gold nanoparticle-DNAzyme assembly. Talanta 124:14–20

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Li Y-S, Tian X-L, Zhang Y-Y, Yang L, Zhang J-H, Wang X-R, Lu S-Y, Ren H-L, Liu Z-S (2012) Enhanced ultrasensitive detection of Cr(III) using 5-thio-2-nitrobenzoic acid (TNBA) and horseradish peroxidase (HRP) dually modified gold nanoparticles (AuNPs). Sensors Actuators B Chem 161:1108–1113

    Article  CAS  Google Scholar 

  34. Lin Y, Xu G, Wei F, Zhang A, Yang J, Hu Q (2016) Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and gamma-Fe(2)O(3)@Au nanoparticles. J Pharm Biomed Anal 121:135–140

    Article  CAS  PubMed  Google Scholar 

  35. Liu F, Zhang Y, Ge S, Lu J, Yu J, Song X, Liu S (2012) Magnetic graphene nanosheets based electrochemiluminescence immunoassay of cancer biomarker using CdTe quantum dots coated silica nanospheres as labels. Talanta 99:512–519

    Article  CAS  PubMed  Google Scholar 

  36. Otieno BA, Krause CE, Latus A, Chikkaveeraiah BV, Faria RC, Rusling JF (2014) On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers. Biosens Bioelectron 53:268–274

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Yu J (2016) Magnetic materials based immunoassay with improved performance for detection of cancer biomarker. Nanomed Nanotechnol 12:520

    Article  Google Scholar 

  38. Kim D, Kim J, Kwak CH, Heo NS, Oh SY, Lee H, Lee G-W, Vilian ATE, Han Y-K, Kim W-S, G-b K, Kwon S, Huh YS (2016) Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip. J Cryst Growth 469:131–135

    Article  CAS  Google Scholar 

  39. Lan T, Dong C, Huang X, Ren J (2013) A sensitive, universal and homogeneous method for determination of biomarkers in biofluids by resonance light scattering correlation spectroscopy (RLSCS). Talanta 116:501–507

    Article  CAS  PubMed  Google Scholar 

  40. Chen Zong DZ, Yang H, Wang S, Chu M, Li P (2017) Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin G-quadruplex DNAzyme on a glass chip array. Microchim Acta 184:3197–3204

    Article  CAS  Google Scholar 

  41. Conzuelo F, Grützke S, Stratmann L, Pingarrón JM, Schuhmann W (2015) Interrogation of immunoassay platforms by SERS and SECM after enzyme-catalyzed deposition of silver nanoparticles. Microchim Acta 183:281–287

    Article  CAS  Google Scholar 

  42. Li Q, Lv S, Lu M, Lin Z, Tang D (2016) Potentiometric competitive immunoassay for determination of aflatoxin B1 in food by using antibody-labeled gold nanoparticles. Microchim Acta 183:2815–2822

    Article  CAS  Google Scholar 

  43. Youhao Zhong YY, Chen Y, Chen W (2016) Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Microchim Acta 183:1989–1994

    Article  CAS  Google Scholar 

  44. Parolo C, de la Escosura-Muniz A, Merkoci A (2013) Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron 40:412–416

    Article  CAS  PubMed  Google Scholar 

  45. Zhou Y, Tian XL, Li YS, Pan FG, Zhang YY, Zhang JH, Yang L, Wang XR, Ren HL, Lu SY, Li ZH, Chen QJ, Liu ZS, Liu JQ (2011) An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II). Biosens Bioelectron 26:3700–3704

    Article  CAS  PubMed  Google Scholar 

  46. Yin H, Zhou Y, Xu Z, Wang M, Ai S (2013) Ultrasensitive electrochemical immunoassay for DNA methyltransferase activity and inhibitor screening based on methyl binding domain protein of MeCP2 and enzymatic signal amplification. Biosens Bioelectron 49:39–45

    Article  CAS  PubMed  Google Scholar 

  47. Teng Y, Zhang X, Fu Y, Liu H, Wang Z, Jin L, Zhang W (2011) Optimized ferrocene-functionalized ZnO nanorods for signal amplification in electrochemical immunoassay of Escherichia coli. Biosens Bioelectron 26:4661–4666

    Article  CAS  PubMed  Google Scholar 

  48. Cao X, Liu S, Feng Q, Wang N (2013) Silver nanowire-based electrochemical immunoassay for sensing immunoglobulin G with signal amplification using strawberry-like ZnO nanostructures as labels. Biosens Bioelectron 49:256–262

    Article  CAS  PubMed  Google Scholar 

  49. Hu W, Chen H, Shi Z, Yu L (2014) Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker. Anal Biochem 453:16–21

    Article  CAS  PubMed  Google Scholar 

  50. Ding L, You J, Kong R, Qu F (2013) Signal amplification strategy for sensitive immunoassay of prostate specific antigen (PSA) based on ferrocene incorporated polystyrene spheres. Anal Chim Acta 793:19–25

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Li X, Cao W, Li Y, Li H, Du B, Wei Q (2014) Facile fabrication of an ultrasensitive sandwich-type electrochemical immunosensor for the quantitative detection of alpha fetoprotein using multifunctional mesoporous silica as platform and label for signal amplification. Talanta 129:411–416

    Article  CAS  PubMed  Google Scholar 

  52. Liu L, Chao Y, Cao W, Wang Y, Luo C, Pang X, Fan D, Wei Q (2014) A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Anal Chim Acta 847:29–36

    CAS  PubMed  Google Scholar 

  53. Dong J, Zhao H, Xu M, Ma Q, Ai S (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141:1980–1986

    Article  CAS  PubMed  Google Scholar 

  54. Lv X, Li Y, Cao W, Yan T, Li Y, Du B, Wei Q (2014) A label-free electrochemiluminescence immunosensor based on silver nanoparticle hybridized mesoporous carbon for the detection of Aflatoxin B1. Sensors Actuators B Chem 202:53–59

    Article  CAS  Google Scholar 

  55. Feng D, Li L, Zhao J, Zhang Y (2015) Simultaneous electrochemical detection of multiple biomarkers using gold nanoparticles decorated multiwall carbon nanotubes as signal enhancers. Anal Biochem 482:48–54

    Article  CAS  PubMed  Google Scholar 

  56. Jiang L, Han J, Li F, Gao J, Li Y, Dong Y, Wei Q (2015) A sandwich-type electrochemical immunosensor based on multiple signal amplification for α-fetoprotein labeled by platinum hybrid multiwalled carbon nanotubes adhered copper oxide. Electrochim Acta 160:7–14

    Article  CAS  Google Scholar 

  57. Wang J, Yuan R, Chai Y, Cao S, Guan S, Fu P, Min L (2010) A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin. Biochem Eng J 51:95–101

    Article  CAS  Google Scholar 

  58. Dou X, Zhang L, Liu C, Li Q, Luo J, Yang M (2017) Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Microchim Acta 185:41–48

    Article  CAS  Google Scholar 

  59. Lingsong Lu BL, Leng J, Wang K, Ma X, Wu S (2016) Electrochemical sandwich immunoassay for human epididymis-specific protein 4 using a screen-printed electrode modified with graphene sheets and gold nanoparticles, and applying a modular magnetic detector device produced by 3D laser sintering. Microchim Acta 183:837–843

    Article  CAS  Google Scholar 

  60. Liu B, Lu L (2019) Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon. Microchim Acta 186:262–270

    Article  CAS  Google Scholar 

  61. Zhu F, Zhao G, Dou W (2017) Voltammetric sandwich immunoassay for Cronobacter sakazakii using a screen-printed carbon electrode modified with horseradish peroxidase, reduced graphene oxide, thionine and gold nanoparticles. Microchim Acta 185:45–52

    Article  CAS  Google Scholar 

  62. Lin J, Zhao Y, Wei Z, Wang W (2011) Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica. Mater Sci Eng B 176:1474–1478

    Article  CAS  Google Scholar 

  63. Zhang X, Guo W, Wang Z, Ke H, Zhao W, Zhang A, Huang C, Jia N (2017) A sandwich electrochemiluminescence immunosensor for highly sensitive detection of alpha fetal protein based on MoS2-PEI-Au nanocomposites and Au@BSA core/shell nanoparticles. Sensors Actuators B Chem 253:470–477

    Article  CAS  Google Scholar 

  64. Jalal UM, Jin GJ, Eom KS, Kim MH, Shim JS (2018) On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains. Bioelectrochemistry 122:221–226

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Gao P, Yan T, Li R, Xu R, Zhang Y, Du B, Wei Q (2018) Ultrasensitive photoelectrochemical immunosensor for insulin detection based on dual inhibition effect of CuS-SiO2 composite on CdS sensitized C-TiO2. Sensors Actuators B Chem 258:1–9

    Article  CAS  Google Scholar 

  66. Bogdanovic J, Colon J, Baker C, Huo Q (2010) A label-free nanoparticle aggregation assay for protein complex/aggregate detection and study. Anal Biochem 405:96–102

    Article  CAS  PubMed  Google Scholar 

  67. Du B, Li Z, Cheng Y (2008) Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection. Talanta 75:959–964

    Article  CAS  PubMed  Google Scholar 

  68. Li YS, Zhou Y, Meng XY, Zhang YY, Song F, Lu SY, Ren HL, Hu P, Liu ZS, Zhang JH (2014) Gold nanoparticle aggregation-based colorimetric assay for beta-casein detection in bovine milk samples. Food Chem 162:22–26

    Article  CAS  PubMed  Google Scholar 

  69. Huo Q (2010) Protein complexes/aggregates as potential cancer biomarkers revealed by a nanoparticle aggregation immunoassay. Colloids Surf B: Biointerfaces 78:259–265

    Article  CAS  PubMed  Google Scholar 

  70. Wang X, Li Y, Quan D, Wang J, Zhang Y, Du J, Peng J, Fu Q, Zhou Y, Jia S, Wang Y, Zhan L (2012) Detection of hepatitis B surface antigen by target-induced aggregation monitored by dynamic light scattering. Anal Biochem 428:119–125

    Article  CAS  PubMed  Google Scholar 

  71. Liang Y, Huang X, Chen X, Zhang W, Ping G, Xiong Y (2018) Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H 2 O 2 amplification system. Sensors Actuators B Chem 259:162–169

    Article  CAS  Google Scholar 

  72. Nie XM, Huang R, Dong CX, Tang LJ, Gui R, Jiang JH (2014) Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum. Biosens Bioelectron 58:314–319

    Article  CAS  PubMed  Google Scholar 

  73. Wang J, Lu J, Su S, Gao J, Huang Q, Wang L, Huang W, Zuo X (2015) Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosens Bioelectron 65:171–175

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, He L, Zhang X, Wang J, Yang L, Liu B, Jiang C, Zhang Z (2017) Colorimetric and SERS dual-readout for assaying alkaline phosphatase activity by ascorbic acid induced aggregation of Ag coated Au nanoparticles. Sensors Actuators B Chem 253:839–845

    Article  CAS  Google Scholar 

  75. de la Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824

    Article  PubMed  CAS  Google Scholar 

  76. Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB (2018) Post-assay growth of gold nanoparticles as a tool for highly sensitive lateral flow immunoassay. Application to the detection of potato virus X. Microchim Acta 185:506–513

    Article  CAS  Google Scholar 

  77. Yao C, Yu S, Li X, Wu Z, Liang J, Fu Q, Xiao W, Jiang T, Tang Y (2017) A plasmonic ELISA for the naked-eye detection of chromium ions in water samples. Anal Bioanal Chem 409:1093–1100

    Article  CAS  PubMed  Google Scholar 

  78. Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q, Lan C, Cao D, Tang Y (2015) Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron 69:128–134

    Article  CAS  PubMed  Google Scholar 

  79. Xuan Z, Li M, Rong P, Wang W, Li Y, Liu D (2016) Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale 8:17271–17277

    Article  CAS  PubMed  Google Scholar 

  80. Liu D, Yang J, Wang HF, Wang Z, Huang X, Wang Z, Niu G, Hight Walker AR, Chen X (2014) Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal Chem 86:5800–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang H, Zhou Y, Zhao Q, Zhang L, Liu L, Xia X, Yi S (2017) A highly sensitive EDTA-based senor for detection of disease biomarker and drug. Sensors Actuators B Chem 249:478–485

    Article  CAS  Google Scholar 

  82. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  PubMed  Google Scholar 

  83. Lan D, Li B, Zhang Z (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:940–944

    Article  PubMed  CAS  Google Scholar 

  84. Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun (Camb) 46:8017–8019

    Article  CAS  Google Scholar 

  85. Das J, Kim H, Jo K, Park KH, Jon S, Lee K, Yang H (2009) Fast catalytic and electrocatalytic oxidation of sodium borohydride on palladium nanoparticles and its application to ultrasensitive DNA detection. Chem Commun (Camb):6394–6396

  86. Liu Y, Wang J, Song X, Xu K, Chen H, Zhao C, Li J (2018) Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Microchim Acta 185:360–366

    Article  CAS  Google Scholar 

  87. Syed Rahin Ahmed JK, Suzuki T, Lee J, Park EY (2016) Detection of Influenza Virus Using Peroxidase-Mimic of Gold Nanoparticles. Biotechnol Bioeng 113:2298–2303

    Article  PubMed  CAS  Google Scholar 

  88. de la Escosura-Muniz A, Maltez-da Costa M, Merkoci A (2009) Controlling the electrochemical deposition of silver onto gold nanoparticles: reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosens Bioelectron 24:2475–2482

    Article  PubMed  CAS  Google Scholar 

  89. Chen G, Jin M, Yan M, Cui X, Wang Y, Zheng W, Qin G, Zhang Y, Li M, Liao Y, Zhang X, Yan F, Abd El-Aty AM, Hacimuftuoglu A, Wang J (2019) Colorimetric bio-barcode immunoassay for parathion based on amplification by using platinum nanoparticles acting as a nanozyme. Microchim Acta 186:339–348

    Article  CAS  Google Scholar 

  90. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  PubMed  Google Scholar 

  91. Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Gao GF, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141

    Article  CAS  PubMed  Google Scholar 

  92. Ahmed SR, Takemeura K, Li TC, Kitamoto N, Tanaka T, Suzuki T, Park EY (2017) Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron 87:558–565

    Article  CAS  PubMed  Google Scholar 

  93. Ahmed SR, Kim J, Suzuki T, Lee J, Park EY (2016) Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens Bioelectron 85:503–508

    Article  CAS  PubMed  Google Scholar 

  94. Wang H, Li S, Si Y, Zhang N, Sun Z, Wu H, Lin Y (2014) Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale 6:8107–8116

    Article  CAS  PubMed  Google Scholar 

  95. Wang GL, Shu JX, Dong YM, Wu XM, Li ZJ (2015) An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification. Biosens Bioelectron 66:283–289

    Article  PubMed  CAS  Google Scholar 

  96. Sun Z, Wang W, Wen H, Gan C, Lei H, Liu Y (2015) Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta 899:91–99

    Article  CAS  PubMed  Google Scholar 

  97. Lin M, Liu Y, Sun Z, Zhang S, Yang Z, Ni C (2012) Electrochemical immunoassay of benzo[a]pyrene based on dual amplification strategy of electron-accelerated Fe3O4/polyaniline platform and multi-enzyme-functionalized carbon sphere label. Anal Chim Acta 722:100–106

    Article  CAS  PubMed  Google Scholar 

  98. Wu D, Fan H, Li Y, Zhang Y, Liang H, Wei Q (2013) Ultrasensitive electrochemical immunoassay for squamous cell carcinoma antigen using dumbbell-like Pt-Fe(3)O(4) nanoparticles as signal amplification. Biosens Bioelectron 46:91–96

    Article  CAS  PubMed  Google Scholar 

  99. Ahmed SR, Kim J, Suzuki T, Lee J, Park EY (2016) Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol Bioeng 113:2298–2303

    Article  CAS  PubMed  Google Scholar 

  100. Wei Q, Xin X, Du B, Wu D, Han Y, Zhao Y, Cai Y, Li R, Yang M, Li H (2010) Electrochemical immunosensor for norethisterone based on signal amplification strategy of graphene sheets and multienzyme functionalized mesoporous silica nanoparticles. Biosens Bioelectron 26:723–729

    Article  CAS  PubMed  Google Scholar 

  101. Bu SJ, Wang KY, Bai HS, Leng Y, Ju CJ, Wang CY, Liu WS, Wan JY (2019) Immunoassay for pathogenic bacteria using platinum nanoparticles and a hand-held hydrogen detector as transducer. Application to the detection of Escherichia coli O157:H7. Microchim Acta 186:296–302

    Article  CAS  Google Scholar 

  102. Liu F, Zhang Y, Yu J, Wang S, Ge S, Song X (2014) Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device. Biosens Bioelectron 51:413–420

    Article  CAS  PubMed  Google Scholar 

  103. Norouzi P, Gupta VK, Faridbod F, Pirali-Hamedani M, Larijani B, Ganjali MR (2011) Carcinoembryonic antigen admittance biosensor based on Au and ZnO nanoparticles using FFT admittance voltammetry. Anal Chem 83:1564–1570

    Article  CAS  PubMed  Google Scholar 

  104. Wang D, Gan N, Zhou J, Xiong P, Cao Y, Li T, Pan D, Jiang S (2014) Signal amplification for multianalyte electrochemical immunoassay with bidirectional stripping voltammetry using metal-enriched polymer nanolabels. Sensors Actuators B Chem 197:244–253

    Article  CAS  Google Scholar 

  105. Su H, Yuan R, Chai Y, Mao L, Zhuo Y (2011) Ferrocenemonocarboxylic-HRP@Pt nanoparticles labeled RCA for multiple amplification of electro-immunosensing. Biosens Bioelectron 26:4601–4604

    Article  CAS  PubMed  Google Scholar 

  106. Tang J, Tang D, Li Q, Su B, Qiu B, Chen G (2011) Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase. Anal Chim Acta 697:16–22

    Article  CAS  PubMed  Google Scholar 

  107. Li NL, Jia LP, Ma RN, Jia WL, Lu YY, Shi SS, Wang HS (2017) A novel sandwiched electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on carbon quantum dots and signal amplification. Biosens Bioelectron 89:453–460

    Article  CAS  PubMed  Google Scholar 

  108. Lan F, Sun G, Liang L, Ge S, Yan M, Yu J (2016) Microfluidic paper-based analytical device for photoelectrochemical immunoassay with multiplex signal amplification using multibranched hybridization chain reaction and PdAu enzyme mimetics. Biosens Bioelectron 79:416–422

    Article  CAS  PubMed  Google Scholar 

  109. Zang S, Liu YJ, Lin MH, Kang JL, Sun YM, Lei HT (2013) A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label. Electrochim Acta 90:246–253

    Article  CAS  Google Scholar 

  110. Huang T, Meng Q, Jie G (2015) Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay. Biosens Bioelectron 66:84–88

    Article  CAS  PubMed  Google Scholar 

  111. Fan GC, Ren XL, Zhu C, Zhang JR, Zhu JJ (2014) A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosens Bioelectron 59:45–53

    Article  CAS  PubMed  Google Scholar 

  112. Rong Z, Wang C, Wang J, Wang D, Xiao R, Wang S (2016) Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 84:15–21

    Article  CAS  PubMed  Google Scholar 

  113. Zhan L, Wu WB, Yang L, Huang CZ (2017) Sensitive detection of respiratory syncytial virus based on a dual signal amplified plasmonic enzyme-linked immunosorbent assay. Anal Chim Acta 962:73–79

    Article  CAS  PubMed  Google Scholar 

  114. Zhang J, Xiong Z, Chen Z (2017) Ultrasensitive electrochemical microcystin-LR immunosensor using gold nanoparticle functional polypyrrole microsphere catalyzed silver deposition for signal amplification. Sensors Actuators B Chem 246:623–630

    Article  CAS  Google Scholar 

  115. Li S, Luo J, Yang X, Wan Y, Liu C (2014) A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe@Carbon dots nanocomposite electrochemiluminescence resonance energy transfer. Sensors Actuators B Chem 197:43–49

    Article  CAS  Google Scholar 

  116. Li L, Feng D, Zhang Y (2016) Simultaneous detection of two tumor markers using silver and gold nanoparticles decorated carbon nanospheres as labels. Anal Biochem 505:59–65

    Article  CAS  PubMed  Google Scholar 

  117. Liu F, Deng W, Zhang Y, Ge S, Yu J, Song X (2014) Application of ZnO quantum dots dotted carbon nanotube for sensitive electrochemiluminescence immunoassay based on simply electrochemical reduced Pt/Au alloy and a disposable device. Anal Chim Acta 818:46–53

    Article  CAS  PubMed  Google Scholar 

  118. Yang H, Sun G, Zhang L, Zhang Y, Song X, Yu J, Ge S (2016) Ultrasensitive photoelectrochemical immunoassay based on CdS@Cu 2 O co-sensitized porous ZnO nanosheets and promoted by multiwalled carbon nanotubes. Sensors Actuators B Chem 234:658–666

    Article  CAS  Google Scholar 

  119. Yang J, Shen H, Zhang X, Tao Y, Xiang H, Xie G (2016) A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens Bioelectron 77:1119–1125

    Article  CAS  PubMed  Google Scholar 

  120. Tiantian Dong QT, Zhao K, Deng A, Li J (2017) Ultrasensitive electrochemiluminescent salbutamol immunoassay with dual-signal amplification using CdSe@SiO2 as label and gold nanoparticles as substrate. Microchim Acta 184:961–968

    Article  CAS  Google Scholar 

  121. Du P, Jin M, Chen G, Zhang C, Cui X, Zhang Y, Zhang Y, Zou P, Jiang Z, Cao X, She Y, Jin F, Wang J (2017) Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Microchim Acta 184:3705–3712

    Article  CAS  Google Scholar 

  122. Gou D, Xie G, Li Y, Zhang X, Chen H (2018) Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe3O4 and Pt nanoparticles. Microchim Acta 185:436–444

    Article  CAS  Google Scholar 

  123. Hu L, Dong T, Zhao K, Deng A, Li J (2017) Ultrasensitive electrochemiluminescent brombuterol immunoassay by applying a multiple signal amplification strategy based on a PAMAM-gold nanoparticle conjugate as the bioprobe and Ag@Au core shell nanoparticles as a substrate. Microchim Acta 184:3415–3423

    Article  CAS  Google Scholar 

  124. Liu J, Shang Y, Zhu Q, Zhang X, Zheng J (2019) A voltammetric immunoassay for the carcinoembryonic antigen using silver(I)-terephthalate metal-organic frameworks containing gold nanoparticles as a signal probe. Microchim Acta 186:509–516

    Article  CAS  Google Scholar 

  125. Mars A, Ben Jaafar S, Gaied ABA, Raouafi N (2018) Electrochemical immunoassay for lactalbumin based on the use of ferrocene-modified gold nanoparticles and lysozyme-modified magnetic beads. Microchim Acta 185:449–456

    Article  CAS  Google Scholar 

  126. Miao L, Jiao L, Zhang J, Li H (2016) Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchim Acta 184:169–175

    Article  CAS  Google Scholar 

  127. Singal S, Srivastava AK, Gahtori B, Rajesh (2016) Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles. Microchim Acta 183:1375–1384

    Article  CAS  Google Scholar 

  128. Wang H, Ma Z (2017) Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles. Microchim Acta 184:3247–3253

    Article  CAS  Google Scholar 

  129. You H, Hua X, Feng L, Sun N, Rui Q, Wang L, Wang M (2017) Competitive immunoassay for imidaclothiz using upconversion nanoparticles and gold nanoparticles as labels. Microchim Acta 184:1085–1092

    Article  CAS  Google Scholar 

  130. Peng D, Liang R-P, Huang H, Qiu J-D (2016) Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs. J Electroanal Chem 761:112–117

    Article  CAS  Google Scholar 

  131. Huang X, Chen R, Xu H, Lai W, Xiong Y (2016) Nanospherical Brush as Catalase Container for Enhancing the Detection Sensitivity of Competitive Plasmonic ELISA. Anal Chem 88:1951–1958

    Article  CAS  PubMed  Google Scholar 

  132. Zhang Z, Zhu N, Dong S, Huang M, Yang L, Wu X, Liu Z, Jiang J, Zou Y (2017) Plasmonic ELISA Based on Nanospherical Brush-Induced Signal Amplification for the Ultrasensitive Naked-Eye Simultaneous Detection of the Typical Tetrabromobisphenol A Derivative and Byproduct. J Agric Food Chem 66:2996–3002

    Article  PubMed  CAS  Google Scholar 

  133. De Wang NG, Zhou J, Xiong P, Cao Y, Li T, Pan D, Jiang S (2014) Signal amplification for multianalyte electrochemical immunoassay with bidirectional stripping voltammetry using metal-enriched polymer nanolabels. Sensors Actuators B Chem 197:244–253

    Article  CAS  Google Scholar 

  134. Dong Peng R-PL, He H, Qiu J-D (2016) Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs. J Electroanal Chem 761:112–117

    Article  CAS  Google Scholar 

  135. Gao-Chao Fan X-LR, Cheng Z, Zhang J-R, Zhu J-J (2014) A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosens Bioelectron 59:45–53

    Article  PubMed  CAS  Google Scholar 

  136. Huang X, Chen R, Xu H, Lai W, Xiong Y (2016) Nanospherical Brush as Catalase Container for Enhancing the Detection Sensitivity of Competitive Plasmonic ELISA. Anal Chem 88:1951–1958

    Article  CAS  PubMed  Google Scholar 

  137. Huilan Su RY, Chai Y, Mao L, Zhuo Y (2011) Ferrocenemonocarboxylic-HRP@Pt nanoparticles labeled RCA for multiple amplification of electro-immunosensing. Biosens Bioelectron 26:4601–4604

    Article  PubMed  CAS  Google Scholar 

  138. Lan F, Sun G, Liang L, Ge S, Yan M, Yu J (2016) Microfluidic paper-based analytical device for photoelectrochemical immunoassay with multiplex signal amplification using multibranched hybridization chain reaction and PdAu enzyme mimetics. Biosens Bioelectron 79:416–422

    Article  CAS  PubMed  Google Scholar 

  139. Li L, Feng D, Zhang Y (2016) Simultaneous detection of two tumor markers using silver and gold nanoparticles decorated carbon nanospheres as labels. Anal Biochem 505:59–65

    Article  CAS  PubMed  Google Scholar 

  140. Liu F, Zhang Y, Yu J, Wang S, Ge S, Song X (2014) Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device. Biosens Bioelectron 51:413–420

    Article  CAS  PubMed  Google Scholar 

  141. Rong Z, Wang C, Wang J, Wang D, Xiao R, Wang S (2016) Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 84:15–21

    Article  CAS  PubMed  Google Scholar 

  142. Shuhuai Li JL, Yang X, Wan Y, Liu C (2014) A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe@Carbon dots. Sensors Actuators B Chem 197:43–49

    Article  CAS  Google Scholar 

  143. Tang J, Tang D, Li Q, Su B, Qiu B, Chen G (2011) Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase. Anal Chim Acta 697:16–22

    Article  CAS  PubMed  Google Scholar 

  144. Xinle Jia XC, Han J, Ma J, Ma Z (2014) Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay. Biosens Bioelectron 53:65–70

    Article  PubMed  CAS  Google Scholar 

  145. Yang J, Shen H, Zhang X, Tao Y, Xiang H, Xie G (2016) A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens Bioelectron 77:1119–1125

    Article  CAS  PubMed  Google Scholar 

  146. Zhan L, Wu WB, Yang L, Huang CZ (2017) Sensitive detection of respiratory syncytial virus based on a dual signal amplified plasmonic enzyme-linked immunosorbent assay. Anal Chim Acta 962:73–79

    Article  CAS  PubMed  Google Scholar 

  147. Zhang Z, Zhu N, Dong S, Huang M, Yang L, Wu X, Liu Z, Jiang J, Zou Y (2018) Plasmonic ELISA Based on Nanospherical Brush-Induced Signal Amplification for the Ultrasensitive Naked-Eye Simultaneous Detection of the Typical Tetrabromobisphenol A Derivative and Byproduct. J Agric Food Chem 66:2996–3002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the financial support of the National Key R&D Program of China (grant numbers 2018YFC1602500, 2017YFC1601205) and the National Natural Science Foundation of China (grant numbers 31601536, 31871888).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Xu or Yu Zhou.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Xu, W. & Zhou, Y. Signal amplification in immunoassays by using noble metal nanoparticles: a review. Microchim Acta 186, 859 (2019). https://doi.org/10.1007/s00604-019-3904-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3904-9

Keywords

Navigation