Skip to main content
Log in

A nanocomposite consisting of ionic liquid-functionalized layered Mg(II)/Al(III) double hydroxides for simultaneous electrochemical determination of cadmium(II), copper(II), mercury(II) and lead(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor is described for the simultaneous determination of Cd2+, Cu2+, Hg2+ and Pb2+ using square wave anodic stripping voltammetry. A glassy carbon electrode (GCE) was modified with N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer ionic liquid doped into magnesium(II)-aluminium(III) layered double hydroxides. The morphology investigations suggest that the material possesses typical interconnected laminated micropores and a mesoporous architecture dispersed on the surface of the GCE. This accelerates mass diffusion and facilitates the deposition-stripping process of metal ions. Key operational parameters including pH, deposition potential, deposition time and the quantity of nanomaterial on the GCE were optimized. The following figures of merit for the ions Cd2+, Cu2+, Hg2+ and Pb2+ are obtained under optimum conditions: (a) detection limits of 250, 25, 250 and 16 ng L−1; (b) linear ranges from 0.5 to 20, 0.05 to 20, 0.5 to 20 and 0.05 to 20 μg L−1, and (c) peak potentials of −768, +42, +302 and − 541 mV (vs. Ag/AgCl). The modified GCE was successfully applied to the determination of these ions in spiked black tea extract and in dried tangerine peel.

Schematic representation of novel electrochemical sensor based on a glassy carbon electrode modified with IL-Mg/Al-LDHs composites for the simultaneous detection of Pb2+, Cd2+, Cu2+ and Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water – an electrochemical approach. Sensors Actuators B Chem 213(3):515–533

    Article  CAS  Google Scholar 

  2. Guo Y, Cao F, Lei X, Mang L, Cheng S, Song J (2016) Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale 8(9):4852

    Article  CAS  Google Scholar 

  3. Wong A, Santos AM, Fatibellofilho O (2017) Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sensors Actuators B Chem 255:2264–2273

    Article  Google Scholar 

  4. Zougagh M, Torres AGAD, Alonso EV, Pavón JMC (2004) Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn. Talanta 62(3):503–510

    Article  CAS  Google Scholar 

  5. Mohammadpour Z, Safavi A, Shamsipur M (2014) A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics. Chem Eng J 255(7):1–7

    Article  CAS  Google Scholar 

  6. Munir A, Shah A, Piro B (2018) Development of a selective electrochemical sensing platform for the simultaneous detection of Tl+, Cu2+, Hg2+, and Zn2+ions. J Electrochem Soc 165(10):B399–B406. https://doi.org/10.1149/2.0441810jes

    Article  CAS  Google Scholar 

  7. Wang M, Meng G (2017) Fluorophores-modified nanomaterials for trace detection of polychlorobiphenyls and heavy metal ions. Sensors Actuators B Chem 243:1137–1147

    Article  CAS  Google Scholar 

  8. Zhang MR, Pan GB (2017) Porous GaN electrode for anodic stripping voltammetry of silver(I). Talanta 165:540–544

    Article  CAS  Google Scholar 

  9. Sang S, Dan L, Hui Z, Sun Y, Jian A, Qiang Z, Zhang W (2017) Facile synthesis of AgNPs on reduced graphene oxide for highly sensitive simultaneous detection ofheavy metal ions. RSC Adv 7(35):21618–21624

    Article  CAS  Google Scholar 

  10. Saidur MR, Aziz AR, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139

    Article  CAS  Google Scholar 

  11. Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76(19):5924–5929

    Article  CAS  Google Scholar 

  12. Zhang H, Rong QI, Evans DG, Duan X (2004) Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. J Solid State Chem 177(3):772–780

    Article  CAS  Google Scholar 

  13. Li M, Ji H, Wang Y, Liu L, Gao F (2012) MgFe-layered double hydroxide modified electrodes for direct electron transfer of heme proteins. Biosens Bioelectron 38(1):239–244

    Article  CAS  Google Scholar 

  14. Yu J, Wang Q, O'Hare D, Sun L (2017) Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev 46(19):5950–5974

    Article  CAS  Google Scholar 

  15. Zhang XQ, Zeng MG, Li SP, Li XD (2014) Methotrexate intercalated layered double hydroxides with different particle sizes: structural study and controlled release properties. Colloids Surfaces B Biointerfaces 117(9):98–106

    Article  CAS  Google Scholar 

  16. Lin C, Meng X, Minrong XU, Shang K, Shiyun AI, Liu Y (2011) Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode. Electrochim Acta 56(27):9769–9774

    Article  Google Scholar 

  17. Wei S, Guo Y, Lu Y, Hu A, Fan S, Li T, Sun Z (2013) Electrochemical biosensor based on graphene, Mg 2 Al layered double hydroxide and hemoglobin composite. Electrochim Acta 91(3):130–136

    Google Scholar 

  18. Kong X, Zhao J, Shi W, Zhao Y, Shao M, Wei M, Wang L, Duan X (2012) Fabrication of aluminum-doped α-Ni(OH) 2 with hierarchical architecture and its largely enhanced electrocatalytic performance. Electrochim Acta 80:257–263

    Article  CAS  Google Scholar 

  19. Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W (2009) Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3(11):3749

    Article  CAS  Google Scholar 

  20. Ma J, Duan X, Lian J, Kim T, Peng P, Liu X, Liu Z, Li H, Zheng W (2010) Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage. Chem Eur J 16(44):13210–13217

    Article  CAS  Google Scholar 

  21. Zhu Z, Qu L, Guo Y, Yan Z, Wei S, Huang X (2010) Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. Sensors Actuators B Chem 151(1):146–152

    Article  CAS  Google Scholar 

  22. Gumpu MB, Veerapandian M, Krishnan UM, Rayappan JBB (2017) Simultaneous electrochemical detection of Cd(II), Pb(II), As(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite. Talanta 162:574–582

    Article  CAS  Google Scholar 

  23. Zhang T, Jin H, Fang Y, Guan J, Ma S, Pan Y, Zhang M, Zhu H, Liu X, Du M (2019) Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV. Mater Chem Phys 225:433–442

    Article  CAS  Google Scholar 

  24. Wang L, Xing H, Zhang S, Ren Q, Pan L, Zhang K, Bu W, Zheng X, Zhou L, Peng W (2013) A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials 34(13):3390–3401

    Article  CAS  Google Scholar 

  25. Song YF, Li T, Zhang W, Chen W, Miras HN (2017) Layered double hydroxides anchored ionic liquids as amphiphilic heterogeneous catalysts for Knoevenagel condensation reaction. Dalton Trans 47(9):3059–3067

    Google Scholar 

  26. Anjum MJ, Zhao J, Zahedi Asl V, Yasin G, Wang W, Wei S, Zhao Z, Qamar Khan W (2019) In-situ intercalation of 8-hydroxyquinoline in Mg-Al LDH coating to improve the corrosion resistance of AZ31. Corros Sci 157:1–10. https://doi.org/10.1016/j.corsci.2019.05.022

    Article  CAS  Google Scholar 

  27. Kikuchi T, Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications. New York: Wiley 2. Russ J Electrochem 38 (12):1364–1365

  28. Gao C, Yu XY, Xu RX, Liu JH, Huang XJ (2012) AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl Mater Interfaces 4(4):4672–4682

    Article  CAS  Google Scholar 

  29. Yang D, Wang L, Chen Z, Megharaj M, Naidu R (2014) Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim Acta 181(11–12):1199–1206

    Article  CAS  Google Scholar 

  30. Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal Chim Acta 874:40–48

    Article  CAS  Google Scholar 

  31. Xie YL, Zhao SQ, Ye HL, Jing Y, Ping S, Hu SQ (2015) Graphene/CeO 2 hybrid materials for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II). J Electroanal Chem 757:235–242

    Article  CAS  Google Scholar 

  32. Wei Y, Gao C, Fan-Li M, Hui-Hua LI, Wang L, Jin-Huai L, Xing-Jiu H (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), Lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116(1):1034–1041

    Article  CAS  Google Scholar 

  33. Dai H, Nan W, Wang D, Ma H, Meng L (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Eng J 299:150–155

    Article  CAS  Google Scholar 

  34. Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (NSFC, Grant No. 21005021 and No. 21375152) and Natural Science Foundation of Guangdong Province (No. 2016A030313740) and State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1813) and Special funds for the Cultivation of Guangdong College Students’ Scientific and Technological lnnovation (No. pdjh2019b0255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyun Zhai.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 7326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Sun, G., Pan, J. et al. A nanocomposite consisting of ionic liquid-functionalized layered Mg(II)/Al(III) double hydroxides for simultaneous electrochemical determination of cadmium(II), copper(II), mercury(II) and lead(II). Microchim Acta 186, 767 (2019). https://doi.org/10.1007/s00604-019-3902-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3902-y

Keywords

Navigation