Skip to main content
Log in

A nanocomposite prepared from hemin and reduced graphene oxide foam for voltammetric sensing of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A foam consisting of reduced graphene oxide was synthesized by a one-pot hydrothermal method. The foam was used to prepare a nanocomposite with hemin which is formed via π-interactions. The nanocomposite was incorporated via a Nafion film and then placed on a glassy carbon electrode (GCE). The modified GCE displays outstanding catalytic activity towards H2O2. It is assumed that this is due to (a) the redox-active center [Fe(III/II)] of hemin, and (b) the crosslinked macroporous structure of the foam. Both improve the electron transfer rate and electrochemical signals. Under the optimum experimental conditions and a working voltage of typically −0.41 mV (vs. SCE), the sensor has a 2.8 nM H2O2 detection limit, and the analytically useful range extends from 5 nM to 5 mM with a sensitivity of 50.5 μA μM−1 cm−2. The modified GCE has high sensitivity and fast response. It was utilized to quantify H2O2 in spiked environmental water samples.

Schematic representation of the electrochemical sensor based on a nanocomposite prepared from hemin and reduced graphene oxide foam, which can be applied to the determination of hydrogen peroxide in serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig.3
Fig.4

Similar content being viewed by others

References

  1. Sun LF, Ding YY, Jiang YL, Liu QY (2017) Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors Actuators B Chem 239:848–856. https://doi.org/10.1016/j.snb.2016.08.094

    Article  CAS  Google Scholar 

  2. Muralikrishna S, Cheunkar S, Lertanantawong B, Ramakrishnappa T, Nagaraju DH, Surareungchai W, Balakrishna RG, Reddy KR (2016) Graphene oxide-Cu(II) composite electrode for non-enzymatic determination of hydrogen peroxide. J Electroanal Chem 776:59–65. https://doi.org/10.1016/j.jelechem.2016.06.034

    Article  CAS  Google Scholar 

  3. Xu FG, Deng M, Li GY, Chen SH, Wang L (2013) Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochim Acta 88:59–65. https://doi.org/10.1016/j.electacta.2012.10.070

    Article  CAS  Google Scholar 

  4. Sun JH, Li CY, Qi YF, Guo SL, Liang X (2016) Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sensors 16:584. https://doi.org/10.3390/s16040584

    Article  CAS  Google Scholar 

  5. Wang CH, Yang C, Song YY, Gao W, Xia XH (2005) Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold film. Adv Funct Mater 15:1267–1275. https://doi.org/10.1002/adfm.200500048

    Article  CAS  Google Scholar 

  6. Klassen NV, Marchlngton D, McGowan HCE (1994) H2O2 determination by the I3 method and by KMnO4 titration. Anal Chem 66:2921–2925. https://doi.org/10.1021/ac00090a020

    Article  CAS  Google Scholar 

  7. Liu QY, Yang YT, Lv XT, Ding YN, Zhang YZ, Jing JJ, Xu CX (2017) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734. https://doi.org/10.1016/j.snb.2016.09.049

    Article  CAS  Google Scholar 

  8. Zhang WC, Niu XH, Li X, He YF, Song HW, Peng YX, Pan JM (2018) A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sensors Actuators B Chem 265:412–420. https://doi.org/10.1016/j.snb.2018.03.082

    Article  CAS  Google Scholar 

  9. Jiang X, Wang HJ, Yuan R, Chai YQ (2018) Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H2O2 released from live cells. Anal Chem 90:8462–8469. https://doi.org/10.1021/acs.analchem.8b01168

    Article  CAS  PubMed  Google Scholar 

  10. Dou BT, Yang JM, Yuan R, Xiang Y (2018) Trimetallic hybrid nanoflower-decorated MoS2 nanosheet sensor for direct in situ monitoring of H2O2 secreted from live cancer cells. Anal Chem 90:5945–5950. https://doi.org/10.1021/acs.analchem.8b00894

    Article  CAS  PubMed  Google Scholar 

  11. Kitte SA, Zafar MN, Zholudov YT, Ma X, Nsabimana A, Zhang W, Xu GB (2018) Determination of concentrated hydrogen peroxide free from oxygen interference at stainless steel electrode. Anal Chem 90:8680–8685. https://doi.org/10.1021/acs.analchem.8b02038

    Article  CAS  PubMed  Google Scholar 

  12. Zhu QJ, Huang JS, Yan MX, Ye J, Wang DW, Lu QQ, Yang XR (2018) N-(Aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles on cobalt disulfide nanowire hybrids for the non-enzymatic chemiluminescence detection of H2O2. Nanoscale 10:14847–14851. https://doi.org/10.1039/c8nr03990a

    Article  CAS  PubMed  Google Scholar 

  13. Feng QM, Shen YZ, Li MX, Zhang ZL, Zhao W, Xu JJ, Chen HY (2016) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)3 2+ for microRNA detection. Anal Chem 88:937–944. https://doi.org/10.1021/acs.analchem.5b03670

    Article  CAS  PubMed  Google Scholar 

  14. Liu YD, Shang TY, Liu YL, Liu XH, Xue ZH, Liu XH (2018) Highly sensitive platinum nanoparticles-embedded porous graphene sensor for monitoring ROS from living cells upon oxidative stress. Sensors Actuators B Chem 263:543–549. https://doi.org/10.1016/j.snb.2018.02.135

    Article  CAS  Google Scholar 

  15. Kang Z, Li Y, Cao SY, Zhang ZH, Guo HJ, Wu PW, Zhou LX, Zhang SC, Zhang XM, Zhang Y (2018) 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing. Inorg Chem Front 5:364–369. https://doi.org/10.1039/c7qi00669a

    Article  CAS  Google Scholar 

  16. Hou YB, Sheng K, Lu Y, Ma C, Liu W, Men XJ, Xu L, Yin SY, Dong B, Bai X, Song HW (2018) Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Microchim Acta 185:397. https://doi.org/10.1007/s00604-018-2925-0

    Article  CAS  Google Scholar 

  17. Li N, Jiang HL, Wang XL, Wang X, Xu GJ, Zhang BB, Wang LJ, Zhao RS, Lin JM (2018) Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trends Anal Chem 102:60–74. https://doi.org/10.1016/j.trac.2018.01.009

    Article  CAS  Google Scholar 

  18. Ding RR, Zhang J, Qi J, Li ZH, Wang CY, Chen MM (2018) N-doped dual carbon-confined 3D architecture rGO/Fe3O4/AC nanocomposite for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 10:13470–13478. https://doi.org/10.1021/acsami.8b00353

    Article  CAS  PubMed  Google Scholar 

  19. Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, Yu ZZ (2018) Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12:11193–11202. https://doi.org/10.1021/acsnano.8b05739

    Article  CAS  PubMed  Google Scholar 

  20. Xiao P, Mao J, Ding K, Luo WJ, Hu WD, Zhang XJ, Zhang XH, Jie JS (2018) Solution-processed 3D rGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultrabroadband photodetection. Adv Mater 30:1801729. https://doi.org/10.1002/adma.201801729

    Article  CAS  Google Scholar 

  21. Lu WD, Sun YJ, Dai HC, Ni PJ, Jiang S, Wang Y, Li Z, Li Z (2016) Direct growth of pod-like Cu2O nanowire arrays on copper foam: highly sensitive and efficient nonenzymatic glucose and H2O2 sensor. Sensors Actuators B Chem 231:860–866. https://doi.org/10.1016/j.snb.2016.03.058

    Article  CAS  Google Scholar 

  22. Zhao Y, Hu CG, Hu Y, Cheng HH, Shi GQ, Qu LT (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375. https://doi.org/10.1002/anie.201206554

    Article  CAS  Google Scholar 

  23. Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  PubMed  Google Scholar 

  24. Jiang XY, Chai YQ, Wang HJ, Yuan R (2014) Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection. Biosens Bioelectron 54:20–26. https://doi.org/10.1016/j.bios.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  25. Xu YF, Liu ZB, Zhang XL, Wang Y, Tian JG, Huang Y, Ma YF, Zhang XY, Chen YS (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater 21:1275–1279. https://doi.org/10.1002/adma.200801617

    Article  CAS  Google Scholar 

  26. Narayana PV, Reddy TM, Gopal P, Raghu P, Reddaiah K, Srinivasulu M (2014) Development of trypan blue polymer film based electrochemical sensor for the determination of dopamine and its simultaneous detection in presence of ascorbic acid and uric acid: a voltammetric method. Anal Bioanal Electrochem 6:485–500. https://doi.org/10.1016/j.aca.2013.06.016

    Article  CAS  Google Scholar 

  27. Palanisamy S, Velusamya V, Chen SW, Yang TCK, Balu S, Banks CE (2019) Enhanced reversible redox activity of hemin on cellulose microfiber integrated reduced graphene oxide for H2O2 sensor applications. Carbohydr Polym 204:152–160. https://doi.org/10.1016/j.carbpol.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Lu W, Chang G, Luo Y, Liao F, Sun XJ (2011) Method for effective immobilization of Ag nanoparticles/graphene oxide composites on single-stranded DNA modified gold electrode for enzymeless H2O2 detection. Mater Sci 46:5260–5266. https://doi.org/10.1007/s10853-011-5464-1

    Article  CAS  Google Scholar 

  29. Ding YN, Yang BC, Liu H, Liu ZX, Zhang X, Zheng XW, Liu QY (2018) FePt-au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B Chem 259:775–783. https://doi.org/10.1016/j.snb.2017.12.115

    Article  CAS  Google Scholar 

  30. Sun YJ, Luo MC, Meng XX, Xiang J, Wang L, Ren QS, Guo SJ (2017) Graphene/intermetallic PtPb nanoplates composites for boosting electrochemical detection of H2O2 released from cells. Anal Chem 89:3761–3767. https://doi.org/10.1021/acs.analchem.7b00248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Shanghai Science and Technology Committee (Grant No. 17070503000, 18dz2308700); Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R49); International Joint Laboratory on Resource Chemistry (IJLRC) and Shanghai Engineering Research Center of Green Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaiguo Xue or Nengqin Jia.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, Y., Li, P. et al. A nanocomposite prepared from hemin and reduced graphene oxide foam for voltammetric sensing of hydrogen peroxide. Microchim Acta 187, 45 (2020). https://doi.org/10.1007/s00604-019-3829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3829-3

Keywords

Navigation