Skip to main content
Log in

A redox modulated ratiometric fluorometric method based on the use of dual-color carbon dots for determination of the activity of enzymes participating in ascorbic acid-related reactions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A turn-on ratiometric fluorescent assay is described for the determination of the activity of enzymes participating in ascorbic acid-forming reactions. Blue-emitting carbon dots (bCDs; with excitation/emission wavelength at 380/450 nm) serve as fluorescent indicator. Their fluorescence is reduced by Fe3+ ions via an inner filter effect. Yellow-emitting CDs (yCDs; with excitation/emission wavelength at 380/550 nm) serve as internal reference because their fluorescence is insensitive to Fe3+. Upon exposure to ascorbic acid (AA), Fe3+ is reduced to Fe2+. Hence, the fluorescence of the bCDs is restored. Thus, enzymes participating in AA-related reactions such as α-glucosidase (α-Glu) and alkaline phosphatase (ALP) can be determined. α-Glu activity was quantified in the range from 0.13 to 6.70 U mL−1, and ALP activity was determined between 2.0 and 130 U L−1. Endowed with excellent sensitivity, selectivity and low background signals, the method may also be used to screen the inhibitors of α-Glu and ALP.

Schematic representation of a redox modulated ratiometric fluorometric method based on the use of dual-color carbon dots for determination of the activity of enzymes participating in ascorbic acid-related reactions. Blue-emitting carbon dots (bCDs) serve as fluorescent indicator while yellow-emitting CDs (yCDs) serve as internal reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang ZX, Yu XH, Li F, Kong FY, Lv WX, Fan DH, Wang W (2017) Preparation of boron-doped carbon dots for fluorometric determination of Pb(II), cu(II) and pyrophosphate ions. Microchim Acta 184:4775–4783. https://doi.org/10.1007/s00604-017-2526-3

    Article  CAS  Google Scholar 

  2. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 44:5116–5118. https://doi.org/10.1039/b812420e

    Article  CAS  Google Scholar 

  3. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 4:6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  4. Lu KH, Lin JH, Lin CY, Chen CF, Yeh YC (2019) A fluorometric paper test for chromium(VI) based on the use of N-doped carbon dots. Microchim Acta 186:227. https://doi.org/10.1007/s00604-019-3337-5

    Article  CAS  Google Scholar 

  5. Xu XM, Cen Y, Xu GH, Wei FD, Shi ML, Hu Q (2019) A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosens Bioelectron 131:232–236. https://doi.org/10.1016/j.bios.2019.02.031

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Yuan Y, Liang GL, Yu SH (2015) Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci 2:1500002. https://doi.org/10.1002/advs.201500002

    Article  CAS  Google Scholar 

  7. Qu D, Miao X, Wang XT, Nie C, L YX, Luo L, Sun ZC (2017) Se & N co-doped carbon dots for high-performance fluorescence imaging agent of angiography. J Mater Chem B 5:4988–4992. https://doi.org/10.1039/C7TB00875A

    Article  CAS  PubMed  Google Scholar 

  8. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. Trends Anal Chem 89:163–180. https://doi.org/10.1016/j.trac.2017.02.001

    Article  CAS  Google Scholar 

  9. Lee HU, Park SY, Park ES, Son B, Lee SC, Lee JW, Lee YC, Kang KS, Kim MI, Park HG, Choi S, Huh YS, Lee SY, Lee KB, Oh YK, Lee J (2014) Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep 4:4665–4671. https://doi.org/10.1038/srep04665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang YY, Mao L, Liu W, Ding F, Zou P, Wang XX, Zhao QB, Rao HB (2018) A ratiometric fluorometric and colorimetric probe for the β-thalassemia drug deferiprone based on the use of gold nanoclusters and carbon dots. Microchim Acta 185:442. https://doi.org/10.1007/s00604-018-2982-4

    Article  CAS  Google Scholar 

  11. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177. https://doi.org/10.1002/adma.201500323

    Article  CAS  PubMed  Google Scholar 

  12. Yan X, Song Y, Zhu CZ, Li HX, Du D, Su XG, Lin YH (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90:2618–2624. https://doi.org/10.1021/acs.analchem.7b04193

    Article  CAS  PubMed  Google Scholar 

  13. Lu WJ, Jiao Y, Gao YF, Qiao J, Mozneb M, Shuang SM, Dong C, Li CZ (2018) Bright yellow fluorescent carbon dots as a multifunctional sensing platform for the label-free detection of fluoroquinolones and histidine. ACS Appl Mater Interfaces 10:42915–42924. https://doi.org/10.1021/acsami.8b16710

    Article  CAS  PubMed  Google Scholar 

  14. Kalaiyarasan G, Hemlata C, Joseph J (2019) Fluorescence turn-on, specific detection of cystine in human blood plasma and urine samples by nitrogen-doped carbon quantum dots. ACS Omega 4:1007–1014. https://doi.org/10.1021/acsomega.8b03187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cen Y, Deng WJ, Yang Y, Yu RQ, Chu X (2017) Core-shell-shell multifunctional nanoplatform for intracellular tumor-related mRNAs imaging and near-infrared light triggered photodynamic-photothermal synergistic therapy. Anal Chem 89:10321–10328. https://doi.org/10.1021/acs.analchem.7b02081

    Article  CAS  PubMed  Google Scholar 

  16. Cen Y, Wu YM, Kong XJ, Wu S, Yu RQ, Chu X (2014) Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells. Anal Chem 86:7119–7127. https://doi.org/10.1021/ac5016694

    Article  CAS  PubMed  Google Scholar 

  17. Chen XZ, Zhang XY, Ma XD, Zhang YY, Gao G, Liu JJ, Hou SC (2019) Novel fluorescent probe for rapid and ratiometric detection of beta-galactosidase and live cell imaging. Talanta 192:308–313. https://doi.org/10.1016/j.talanta.2018.09.061

    Article  CAS  PubMed  Google Scholar 

  18. Yang XF, Qin XJ, Li YX, Yan M, Cui Y, Sun GX (2018) TBET-based ratiometric fluorescent probe for Hg2+ with large pseudo-stokes shift and emission shift in aqueous media and intracellular colorimetric imaging in live hela cells. Biosens Bioelectron 121:62–71. https://doi.org/10.1016/j.bios.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  19. Zhao YR, Li YH, Wang YJ, Zheng J, Yang RH (2014) A new strategy for fluorometric detection of ascorbic acid based on hydrolysis and redox reaction. RSC Adv 4:35112–35115. https://doi.org/10.1039/C4RA04822A

    Article  CAS  Google Scholar 

  20. Zhao D, Li J, Peng CY, Zhu SY, Sun J, Yang XR (2019) Fluorescence immunoassay based on the alkaline phosphatase triggered in situ fluorogenic reaction of o-phenylenediamine and ascorbic acid. Anal Chem 91:2978–2984. https://doi.org/10.1021/acs.analchem.8b05203

    Article  CAS  PubMed  Google Scholar 

  21. Gray RS, Olefsky JM (1982) Effect of α-glucosidase inhibitor on the metabolic response of diabetic rats to a high carbohydrate diet, consisting of starch and sucrose, or glucos. Metab Clin Exp 31:88–92. https://doi.org/10.1016/0026-0495(82)90032-4

    Article  CAS  PubMed  Google Scholar 

  22. Xue Q, Cao XY, Zhang CL, Xian YZ (2018) Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme. Microchim Acta 185:231. https://doi.org/10.1007/s00604-018-2769-7

    Article  CAS  Google Scholar 

  23. Song ZG, Kwok TK, Zhao EG, He ZK, Hong YN, Lam WY, Liu B, Tang BZ (2014) A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl Mater Interfaces 6:17245–17254. https://doi.org/10.1021/am505150d

    Article  CAS  PubMed  Google Scholar 

  24. Lorente JA, Valenzuela H, Morote J, Gelabert A (1999) Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med Mol Imaging 26:625–632. https://doi.org/10.1007/s002590050430

    Article  CAS  Google Scholar 

  25. Kang WJ, Ding YY, Zhou H, Liao QY, Yang X, Yang YG, Jiang JS, Yang MH (2015) Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots. Microchim Acta 182:1161–1167. https://doi.org/10.1007/s00604-014-1439-7

    Article  CAS  Google Scholar 

  26. Liu HJ, Li M, Xia YN, Ren XQ (2017) A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Appl Mater Interfaces 9:120–126. https://doi.org/10.1021/acsami.6b11920

    Article  CAS  PubMed  Google Scholar 

  27. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  28. Jiang K, Sun S, Zhang L, Wang YH, Cai CZ, Lin HW (2015) Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing. ACS Appl Mater Interfaces 7:23231–23238. https://doi.org/10.1021/acsami.5b07255

    Article  CAS  PubMed  Google Scholar 

  29. Liu T, Dong JX, Liu SG, Li N, Lin SM, Fan YZ, Lei JL, Luo HQ, Li NB (2017) Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of ag/CQDs composite for Hg2+ ions detection. J Hazard Mater 322:430–436. https://doi.org/10.1016/j.jhazmat.2016.10.034

    Article  CAS  PubMed  Google Scholar 

  30. Li HX, Yan X, Qiao SP, Lu GY, Su XG (2018) Yellow-emissive carbon dot-based optical sensing platforms: cell imaging and analytical applications for biocatalytic reactions. ACS Appl Mater Interfaces 10:7737–7744. https://doi.org/10.1021/acsami.7b17619

    Article  CAS  PubMed  Google Scholar 

  31. Feng T, Ai XZ, Ong HM, Zhao YL (2016) Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl Mater Interfaces 8:18732–18740. https://doi.org/10.1021/acsami.6b06695

    Article  CAS  PubMed  Google Scholar 

  32. Gao MX, Liu CF, Wu ZL, Zeng QL, Yang XX, Wu WB, Li YF, Huang CZ (2013) A surfactant-assisted redox hydrothermal route to prepare highly photoluminescent carbon quantum dots with aggregation-induced emission enhancement properties. Chem Commun 49:8015–8017. https://doi.org/10.1039/C3CC44624G

    Article  CAS  Google Scholar 

  33. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491. https://doi.org/10.1021/acsnano.5b05406

    Article  CAS  PubMed  Google Scholar 

  34. Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  35. Gregory JD (1955) The stability of N-ethylmaleimide and its reaction with sulfhydryl groups. J Am Chem Soc 77:3922–3923. https://doi.org/10.1021/ja01619a073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61775099, 21705080) and Natural Science Foundation of Jiangsu Province (No. BK20171487, BK20171043), Science and Technology Development Fund of Nanjing Medical University-Major Project (No.NMUD2018004), and R&D fund for Smart Health Technology Innovation of Nanjing Medical University and Jiangsu Salt Group (No. NMU-SY201801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Hu or Yao Cen.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4.44 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Xu, J., Wang, L. et al. A redox modulated ratiometric fluorometric method based on the use of dual-color carbon dots for determination of the activity of enzymes participating in ascorbic acid-related reactions. Microchim Acta 186, 818 (2019). https://doi.org/10.1007/s00604-019-3820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3820-z

Keywords

Navigation