Skip to main content

Advertisement

Log in

One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon dots (N-CDs) with fluorescence excitation/emission maxima at 365/450 nm were prepared by a one-step hydrothermal approach. The dots possess remarkable photostability, fluorescence blinking and good biocompatibility, and this favors utilization in stochastic optical reconstruction microscopy (STORM). A spatial resolution down to ~60 nm was achieved when imaging HeLa cells using 647-nm laser excitation. This opens new possibilities for various super-resolution techniques based on stochastic optical switching. The remarkable optical properties of the N-CDs also enable them to be applied as invisible security ink for use in patterning, information storage and anti-counterfeiting. Further, it is found that the fluorescence of the N-CDs can be quenched by curcumin with high efficiency due to a combination of inner filter effect and static quenching. Based on this, a fluorometric assay with a detection limit of 21 ng mL−1 was developed for the determination of curcumin.

Schematic representation of the applications of N-doped carbon dots (N-CDs). Curcumin quenches the fluorescence of N-CDs with high efficiency. The remarkable optical properties of the N-CDs enable them to be applied in fluorescent ink, cell imaging and stochastic optical reconstruction microscopy (STORM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikroskop Anat 9(1):413–418. https://doi.org/10.1007/bf02956173

    Article  Google Scholar 

  2. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Bio 18(11):685–701. https://doi.org/10.1038/nrm.2017.71

    Article  CAS  Google Scholar 

  3. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  4. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753. https://doi.org/10.1126/science.1146598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Fruhwirth G, Cai E, Ng T, Selvin PR (2013) 3D super-resolution imaging with blinking quantum dots. Nano Lett 13(11):5233–5241. https://doi.org/10.1021/nl4026665

    Article  CAS  PubMed  Google Scholar 

  6. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877. https://doi.org/10.1126/science.1074952

    Article  CAS  PubMed  Google Scholar 

  7. van de Linde S, Krstić I, Prisner T, Doose S, Heilemann M, Sauer M (2011) Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10(4):499–506. https://doi.org/10.1039/c0pp00317d

    Article  CAS  PubMed  Google Scholar 

  8. Reineck P, Francis A, Orth A, Lau DWM, Nixon-Luke RDV, Rastogi ID, Razali WAW, Cordina NM, Parker LM, Sreenivasan VKA (2016) Brightness and Photostability of emerging red and near-IR fluorescent nanomaterials for bioimaging. Adv Opt Mater 4(10):1549–1557. https://doi.org/10.1002/adom.201600212

    Article  CAS  Google Scholar 

  9. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  10. Hu C, Li M, Qiu J, Sun YP (2019) Design and fabrication of carbon dots for energy conversion and storage. Chem Soc Rev 48(8):2315–2337. https://doi.org/10.1039/c8cs00750k

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Xia Y (2019) Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Microchim Acta 186(1):50–75. https://doi.org/10.1007/s00604-018-3110-1

    Article  CAS  Google Scholar 

  12. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098. https://doi.org/10.1039/c4cs00141a

    Article  CAS  PubMed  Google Scholar 

  13. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184(2):343–368. https://doi.org/10.1007/s00604-016-2043-9

    Article  CAS  Google Scholar 

  14. Park Y, Yoo J, Lim B, Kwon W, Rhee SW (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A 4(30):11582–11603. https://doi.org/10.1039/c6ta04813g

    Article  CAS  Google Scholar 

  15. Bu L, Peng J, Peng H, Liu S, Xiao H, Liu D, Pan Z, Chen Y, Chen F, He Y (2016) Fluorescent carbon dots for the sensitive detection of Cr(VI) in aqueous media and their application in test papers. RSC Adv 6(98):95469–95475. https://doi.org/10.1039/c6ra19977a

    Article  CAS  Google Scholar 

  16. Zhou X, Zhao G, Tan X, Qian X, Zhang T, Gui J, Yang L, Xie X (2019) Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchim Acta 186(2):67–75. https://doi.org/10.1007/s00604-018-3176-9

    Article  CAS  Google Scholar 

  17. Pirsaheb M, Mohammadi S, Salimi A, Payandeh M (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 186(4):231–250. https://doi.org/10.1007/s00604-019-3338-4

    Article  CAS  Google Scholar 

  18. Chizhik AM, Stein S, Dekaliuk MO, Battle C, Li W, Huss A, Platen M, Schaap IA, Gregor I, Demchenko AP (2015) Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett 16(1):237–242. https://doi.org/10.1021/acs.nanolett.5b03609

    Article  CAS  PubMed  Google Scholar 

  19. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908. https://doi.org/10.1002/anie.200902073

    Article  CAS  Google Scholar 

  20. Xu L, Fan H, Huang L, Xia J, Huang J, Li M, Ding H, Huang K, Li S (2017) Eosinophilic nitrogen-doped carbon dots derived from tribute chrysanthemum for label-free detection of Fe3+ ions and hydrazine. J Taiwan Inst Chem E 78:247–253. https://doi.org/10.1016/j.jtice.2017.06.011

    Article  CAS  Google Scholar 

  21. Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 11(3):331–341. https://doi.org/10.1016/j.intimp.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  22. Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279(19):20067–20075. https://doi.org/10.1074/jbc.M400022200

    Article  CAS  PubMed  Google Scholar 

  23. Biedermann LB, Bolen ML, Capano MA (2009) Insights into few-layer epitaxial graphene growth on 4 H-SiC (0001) substrates from STM studies. Phys Rev B 79(12):125411–125410. https://doi.org/10.1103/PhysRevB.79.125411

    Article  CAS  Google Scholar 

  24. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  PubMed  Google Scholar 

  25. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110. https://doi.org/10.1021/nn300760g

    Article  CAS  PubMed  Google Scholar 

  26. Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60(12):421–428. https://doi.org/10.1016/j.carbon.2013.04.055

    Article  CAS  Google Scholar 

  27. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 125(30):7954–7958. https://doi.org/10.1002/ange.201301114

    Article  Google Scholar 

  28. Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12(3):332–347. https://doi.org/10.2174/138945011794815356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Q, Chen B, Zou H, Li Y, Huang C (2018) Inner filter with carbon quantum dots: a selective sensing platform for detection of hematin in human red cells. Biosens Bioelectron 100:148–154. https://doi.org/10.1016/j.bios.2017.08.049

    Article  CAS  PubMed  Google Scholar 

  30. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York

    Book  Google Scholar 

  31. Xu H, Yu DH, Liu LL, Yan PH, Yue ZY (2010) Small molecular glasses based on multiposition encapsulated phenyl benzimidazole iridium(III) complexes: toward efficient solution-processable host-free electrophosphorescent diodes. J Phys Chem B 114(1):141–150. https://doi.org/10.1021/jp909297d

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, Chen X (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86(19):9846–9852. https://doi.org/10.1021/ac502446m

    Article  CAS  PubMed  Google Scholar 

  33. Verma NC, Rao C, Nandi CK (2018) Nitrogen-doped biocompatible carbon dot as a fluorescent probe for STORM nanoscopy. J Phys Chem C 122(8):4704–4709. https://doi.org/10.1021/acs.jpcc.7b12773

    Article  CAS  Google Scholar 

  34. Das SK, Liu Y, Yeom S, Kim DY, Richards CI (2014) Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett 14(2):620–625. https://doi.org/10.1021/nl403820m

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21708007 and No. 21277110) and Natural Science Foundation of Hunan Province (No. 2018JJ3030). The authors would also like to thank Mr. Zhou Chunyuan for assistance in super-resolution microscopy data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingdong Peng or Jing Huang.

Ethics declarations

The author(s) declare that they have no competing interests.

Ethical approval

All procedures performed in our studies were in accordance with the guidelines of the National Institute of Health, China, and approved by the Institutional Ethical Committee (IEC) of Hunan University. We also obtained informed consent for any experimentation with human urine samples.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, L., Luo, T., Peng, H. et al. One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy. Microchim Acta 186, 675 (2019). https://doi.org/10.1007/s00604-019-3762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3762-5

Keywords

Navigation