Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: A SERS-based lateral flow assay for the stroke biomarker S100-β

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

This article was retracted on 18 January 2021

This article has been updated

Abstract

A surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) is described for the quantitative analysis of the proteinic stroke biomarker S100-β that has to be detected at very low concentration levels. The Raman reporter 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) on gold nanoparticles (GNPs) was employed as the SERS tags. They are shown to perform much better than bare GNPs in LF strips. The S100-β protein can be detected by this method with very low detection limits by monitoring the intensity of the characteristic Raman peak of the S100-β protein-conjugated GNPs at 1332 cm−1. Under optimized conditions, the assay works in the 1 pg·mL−1 to 40 ng·mL−1 S100-β concentration range, and the detection limit is as low as 0.14 pg·mL−1. This is lower by a factor of 3 compared to colorimetric or fluorimetric methods.

Schematic illustration of the configuration (A) and the principle of the SERS-based lateral flow assay for quantification of S100-β (B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Jickling GC, Sharp FR (2011) Blood biomarkers of ischemic stroke. Neurotherapeutics 8:349–360. https://doi.org/10.1007/s13311-011-0050-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jickling GC, Sharp FR (2015) Biomarker panels in ischemic stroke. Stroke 46:915–920. https://doi.org/10.1161/STROKEAHA.114.005604

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dassan P, Keir G, Brown MM (2009) Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis 27:295–302. https://doi.org/10.1159/000199468

    Article  CAS  PubMed  Google Scholar 

  4. Whiteley W, Tseng MC, Sandercock P (2008) Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke 39:2902–2909. https://doi.org/10.1161/STROKEAHA.107.511261

    Article  PubMed  Google Scholar 

  5. Bustamante A, López-Cancio E, Pich S, Penalba A, Giralt D, García-Berrocoso T, Ferrer-Costa C, Gasull T, Hernández-Pérez M, Millan M, Rubiera M, Cardona P, Cano L, Quesada H, Terceño M, Silva Y, Castellanos M, Garces M, Reverté S, Ustrell X, Marés R, Baiges JJ, Serena J, Rubio F, Salas E, Dávalos A, Montaner J (2017) Blood biomarkers for the early diagnosis of stroke: the stroke-chip study. Stroke 48:2419–2425. https://doi.org/10.1161/STROKEAHA.117.017076

    Article  CAS  PubMed  Google Scholar 

  6. Ng GJL, Quek AML, Cheung C, Arumugam TV, Seet RCS (2017) Stroke biomarkers in clinical practice: a critical appraisal. Neurochem Int 107:11–22. https://doi.org/10.1016/j.neuint.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  7. Prakash R, Carmichael ST (2015) Blood–brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 28:556–564. https://doi.org/10.1097/WCO.0000000000000248

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Zhao P, Mao L, Hou Y, Li D (2018) Determination of brain injury biomarkers by surface-enhanced raman scattering using hollow gold nanospheres. RSC Adv 8:3143–3150. https://doi.org/10.1039/C7RA12410D

    Article  CAS  Google Scholar 

  9. Monbailliu T, Goossens J, Hachimi-Idrissi S (2017) Blood protein biomarkers as diagnostic tool for ischemic stroke: a systematic review. Biomark Med 11:503–512. https://doi.org/10.2217/bmm-2016-0232

    Article  CAS  PubMed  Google Scholar 

  10. Zhao P, Li H, Li D, Hou Y, Mao L, Yang M, Wang Y (2019) A SERS nano-tag-based magnetic-separation strategy for highly sensitive immunoassay in unprocessed whole blood. Talanta 198:527–533. https://doi.org/10.1016/j.talanta.2019.02.040

    Article  CAS  PubMed  Google Scholar 

  11. Mirzaei H, Momeni F, Saadatpour L, Sahebkar A, Goodarzi M, Masoudifar A, Kouhpayeh S, Salehi H, Mirzaei HR, Jaafari MR (2018) MicroRNA: relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol 233:856–865. https://doi.org/10.1002/jcp.25787

    Article  CAS  PubMed  Google Scholar 

  12. Dayon L, Turck N, Garci-Berrocoso T, Walter N, Burkhard PR, Vilalta A, Sahuquillo J, Montaner J, Sanchez JC (2011) Brain extracellular fluid protein changes in acute stroke patients. J Proteome Res 10:1043–1051. https://doi.org/10.1021/pr101123t

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Choi N, Cheng Z, Ko J, Chen L, Choo J (2016) Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal Chem 89:1163–1169. https://doi.org/10.1021/acs.analchem.6b03536

    Article  CAS  PubMed  Google Scholar 

  14. Van Hooij A, Fat EMTK, Richardus R, Van Den Eeden SJ, Wilson L, De Dood CJ, Faber R, Alam K, Richardus JH, Corstjens PLAM, Geluk A (2016) Quantitative lateral flow strip assays as user-friendly tools to detect biomarker profiles for leprosy. Sci Rep 6:34260. https://doi.org/10.1038/srep34260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mei Z, Tang L (2017) Surface-Plasmon-coupled fluorescence enhancement based on ordered gold Nanorod Array biochip for ultrasensitive DNA analysis. Anal Chem 89:633–639. https://doi.org/10.1021/acs.analchem.6b02797

    Article  CAS  PubMed  Google Scholar 

  16. Mao X, Xu H, Zeng Q, Zeng L, Liu. (2009) Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem Commun 21: 3065–3067. https://doi.org/10.1039/B822582F

  17. Fu X, Cheng Z, Yu J, Choo P, Chen L, Choo J (2016) A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron 78:530–537. https://doi.org/10.1016/j.bios.2015.11.099

    Article  CAS  PubMed  Google Scholar 

  18. Rong Z, Xiao R, Xing S, Xiong G, Yu Z, Wang L, Jia X, Wang K, Cong Y, Wang S (2018) SERS-based lateral flow assay for quantitative detection of C-reactive protein as an early bio-indicator of a radiation-induced inflammatory response in nonhuman primates. Analyst 143:2115–2121. https://doi.org/10.1039/c8an00160j

    Article  CAS  PubMed  Google Scholar 

  19. Xie W, Qiu P, Mao C (2011) Bio-imaging, detection and analysis by using nanostructures as SERS substrates. J Mater Chem 21:5190–5202. https://doi.org/10.1039/c0jm03301d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li D, Yang M, Li H, Mao L, Wang Y, Sun B (2019) SERS based protocol using flow glass-hemostix for detection of neuron-specific enolase in blood plasma[J]. New J Chem 43:5925–5931. https://doi.org/10.1039/c8nj02561d

    Article  CAS  Google Scholar 

  21. Chen S, Dong L, Yan M, Dai Z, Sun C, Li X (2018) Rapid and sensitive biomarker detection using molecular imprinting polymer hydrogel and surface-enhanced Raman scattering. R Soc Open Sci 5:171488. https://doi.org/10.1098/rsos.171488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khlebtsov BN, Bratashov DN, Byzova NA, Dzantiev BB, Khlebtsov NG (2019) SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res 12:413–420. https://doi.org/10.1007/s12274-018-2232-4

    Article  CAS  Google Scholar 

  23. Guerrini L, Arenal R, Mannini B, Chiti F, Pini R, Matteini P, Alvarez-puebla RA (2015) SERS detection of amyloid oligomers on metallorganic-decorated plasmonic beads. ACS Appl Mater Interfaces 7:9420–9428. https://doi.org/10.1021/acsami.5b01056

    Article  CAS  PubMed  Google Scholar 

  24. Wang R, Kim K, Choi N, Wang X, Lee J, Jeon J (2018) Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sensors Actuators B Chem 270:72–79. https://doi.org/10.1016/j.snb.2018.04.162

    Article  CAS  Google Scholar 

  25. Pang Y, Wang C, Lu LC, Lu L, Wang C, Sun Z, Xiao R (2019) Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron 130:204–213. https://doi.org/10.1016/j.bios.2019.01.039

    Article  CAS  PubMed  Google Scholar 

  26. Tharion J, Satija J, Mukherji S (2015) Facile synthesis of size-tunable silver nanoparticles by heteroepitaxial growth method for efficient NIR SERS. Plasmonics 10:753–763. https://doi.org/10.1007/s11468-014-9862-5

    Article  CAS  Google Scholar 

  27. Chen Q, Rao Y, Ma X, Dong J, Qian W (2011) Raman spectroscopy for hydrogen peroxide scavenging activity assay using gold nanoshell precursor nanocomposites as SERS probes. Anal Methods 3:274–279. https://doi.org/10.1039/c0ay00629g

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Sun J, Yang Q, Lu W, Dong J, Qian W (2015) A SERS protocol as a potential tool to access 6-mercaptopurine release accelerated by glutathione-S-transferase. Analyst 140:7578–7585. https://doi.org/10.1039/c5an01588j

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Ma X, Dong J, Qian W (2009) Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity. Anal Chem 81:8916–8922. https://doi.org/10.1021/ac901534b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funds from the National Natural Science Foundation of China (Grant No., 81471212, 81701179, 81501106 and 81271275), Taishan Scholars Project of Shandong Province, Development Plan of Science and Technology of Traditional Chinese Medicine in Shandong (Grant No.2017-245); the Natural Science Foundation of Shandong (Grant No. ZR2012HZ006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhao or Baoliang Sun.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 467 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hou, Y., Li, H. et al. RETRACTED ARTICLE: A SERS-based lateral flow assay for the stroke biomarker S100-β. Microchim Acta 186, 548 (2019). https://doi.org/10.1007/s00604-019-3634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3634-z

Keywords

Navigation