Skip to main content
Log in

Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) method is described for aptamer-based detection of ofloxacin (OFL). It is making use of a TiO2 nanotube array (NTA) that is sensitized with a structure composed of polydopamine and silver sulfide nanoparticles. The NTA were prepared by a two-step synthetic method. First, the TiO2 nanotube electrode was covered with Ag2S nanoparticles via successive ionic layer adsorption and reaction strategy. Next, they were coated with a thin film of polydopamine (PDA) by in-situ polymerization. The inorganic/organic nanocomposites exhibit distinctly enhanced visible-light PEC activity. This was exploited to fabricate a PEC aptasensor. The PDA film serves as both the sensitizer for charge separation and as a support to bind the aptamer against OFL. The aptasensor undergoes a decrease in photocurrent due to the formation of the aptamer-OFL complex. Under the optimized conditions and at a typical working potential of 0 V (vs. Hg/Hg2Cl2), the NTA has a linear response in the 5.0 pM to 100 nM OFL concentration range and a 0.75 pM detection limit (at S/N = 3). The aptasensor was successfully applied to the determination of OFL in spiked milk samples.

Schematic illustration for the preparation and mechanism of the photoelectrochemical aptasensor for ofloxacin. TiO2 NTs: TiO2 nanotube arrays; PDA: polydopamine; MCH: 6-mercapto-1-hexanol; OFL: ofloxacin; PEC: photoelectrochemistry; CB: conduction band; VB: valence band; LUMO: the lowest unoccupied molecular orbital; HOMO: the highest occupied molecular orbital; AA: ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical aptasensing. Trends Anal Chem 82:307–315

    Article  CAS  Google Scholar 

  2. Wang GL, Shu JX, Dong YM, Wu XM, Zhao WW, Xu JJ, Chen HY (2015) Using G-quadruplex/hemin to “switch-on” the cathodic photocurrent of p-type PbS quantum dots: toward a versatile platform for photoelectrochemical aptasensing. Anal Chem 87:2892–2900

    Article  CAS  Google Scholar 

  3. Liu S, Xing XR, Yu JH, Lian WJ, Li J, Cui M, Huang JD (2012) A novel label-free electrochemical aptasensor based on graphene–polyaniline composite film for dopamine determination. Biosens Bioelectron 36:186–191

    Article  Google Scholar 

  4. Du Y, Dong SJ (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89:189–215

    Article  CAS  Google Scholar 

  5. Wang Y, Bian F, Qin XF, Wang QQ (2018) Visible light photoelectrochemical aptasensor for sensitive detection of chloramphenicol based on trivalent Eu-doped CdS quantum dots-sensitized TiO2 nanorod array. Microchim Acta 185:161

    Article  Google Scholar 

  6. Wang GL, Gu TT, Dong YM, Wu XM, Li ZJ (2015) Photoelectrochemical aptasensing of lead(II) ion based on the in situ generation of photosensitizer of a self-operating photocathode. Electrochem Commun 61:117–120

    Article  CAS  Google Scholar 

  7. Qin XF, Wang QQ, Geng LP, Shu XL, Wang Y (2019) A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots -sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol. Talanta 197:28–35

    Article  CAS  Google Scholar 

  8. Li HN, Zhu MY, Chen W, Wang K (2017) Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: effective charge separation and application to ultrasensitive sensing of dopamine. Microchim Acta 184:4827–4833

    Article  CAS  Google Scholar 

  9. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359

    Article  CAS  Google Scholar 

  10. Lee YL, Chi CF, Liau SY (2010) CdS/CdSe co-sensitized TiO2 Photoelectrode for efficient hydrogen generation in a Photoelectrochemical cell. Chem Mater 22:922–927

    Article  CAS  Google Scholar 

  11. Chen YL, Tao Q, Fu WY, Yang HB, Zhou XM, Su S, Ding D, Mu YN, Li X, Li MH (2014) Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem Commun 50:9509–9512

    Article  CAS  Google Scholar 

  12. Kalpana K, Selvaraj V (2016) Thiourea assisted hydrothermal synthesis of ZnS/CdS/Ag2S nanocatalysts for photocatalytic degradation of Congo red under direct sunlight illumination. RSC Adv 6:4227–4236

    Article  CAS  Google Scholar 

  13. Gholami M, Qorbani M, Moradlou O, Naseri N, Moshfegh AZ (2014) Optimal Ag2S nanoparticle incorporated TiO2 nanotube array for visible water splitting. RSC Adv 4:7838–7844

    Article  CAS  Google Scholar 

  14. Neves MC, Nogueira JMF, Trindade T, Mendonça MH, Pereira MI, Monteiro OC (2009) Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. J Photochem Photobiol A Chem 204:168–173

    Article  CAS  Google Scholar 

  15. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  16. Nam HJ, Kim B, Ko MJ, Jin M, Kim JM, Jung DY (2012) A new mussel-inspired polydopamine sensitizer for dye-sensitized solar cells: controlled synthesis and charge transfer. Chem Eur J 18:14000–14007

    Article  CAS  Google Scholar 

  17. Wang GX, Xu QJ, Liu L, Su XL, Lin JH, Xu GY, Luo XL (2017) Mixed self-assembly of polyethylene glycol and aptamer on polydopamine surface for highly sensitive and low-fouling detection of adenosine triphosphate in complex media. ACS Appl Mater Interfaces 9:31153–31160

    Article  CAS  Google Scholar 

  18. Yang Y, Hu WH (2017) Bifunctional polydopamine thin film coated zinc oxide nanorods for label free photoelectrochemical immunoassay. Talanta 166:141–147

    Article  CAS  Google Scholar 

  19. Stolker AAM, Brinkman UAT (2005) Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals: a review. J Chromatogr A 1067:15–53

    Article  CAS  Google Scholar 

  20. Monk J, Campoli-Richards D (1987) Ofloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 33:346–391

    Article  CAS  Google Scholar 

  21. Sun WY, Liu WY, Qu LB (2007) Development of ELISA and immunochromatographic assay for Ofloxacin. Chin Chem Lett 18:1107–1110

    Article  CAS  Google Scholar 

  22. Sun HW, He P, Lv YK, Liang SX (2007) Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J Chromatogr B 852:145–151

    Article  CAS  Google Scholar 

  23. Wang H, Li LH, Xing R, Zhang YY, Wu TT, Chen B, Li ZX, Fei ZH, Liu ZM, Ding H (2019) Screening of antimicrobials in animal-derived foods with desorption corona beam ionization (DCBI) mass spectrometry. Food Chem 272:411–417

    Article  CAS  Google Scholar 

  24. Li J, Ren XL, Diao YY, Chen Y, Wang QL, Jin WT, Zhou P, Fan QQ, Zhang YB, Liu HM (2018) Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem 257:259–264

    Article  CAS  Google Scholar 

  25. Liu W, Guo YM, Li HF, Zhao M, Lai ZS, Li BX (2015) A paper-based chemiluminescence device for the determination of ofloxacin. Spectrochim Acta A 137:1298–1303

    Article  CAS  Google Scholar 

  26. Si XJ, Wei YL, Wang CL, Li L, Ding YP (2018) A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film. Anal Methods 10:1961–1967

    Article  CAS  Google Scholar 

  27. Zang S, Liu YJ, Lin MH, Kang JL, Sun YM, Lei HT (2013) A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label. Electrochim Acta 90:246–253

    Article  CAS  Google Scholar 

  28. Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Vlierberghe SV, Strehlitz B, Wael KD (2017) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors Actuators B Chem 240:1024–1035

    Article  CAS  Google Scholar 

  29. Zhou XT, Wang LM, Shen GQ, Zhang DW, Xie JL, Mamut A, Huang WW, Zhou SS (2018) Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim Acta 185:355

    Article  Google Scholar 

  30. Mirzajani R, Pourreza N, Burromandpiroze J (2018) Fabrication of magnetic Fe3O4@nSiO2@mSiO2–NH2 core–shell mesoporous nanocomposite and its application for highly efficient ultrasound assisted dispersive μSPE-spectrofluorimetric detection of ofloxacin in urine and plasma samples. Ultrason Sonochem 40:101–112

    Article  CAS  Google Scholar 

  31. Qiao JL, Wang QY, Ye JX, Xiao YK (2016) Enhancing photoelectrochemical performance of TiO2 nanotube arrays by CdS and Bi2S3 co-sensitization. J Photochem Photobiol A 319(320):34–39

    Article  Google Scholar 

  32. Wang QY, Jin RC, Yin CL, Wang MJ, Wang JF, Gao SM (2017) Photoelectrocatalytic removal of dye and Cr(VI) pollutants with Ag2S and Bi2S3 co-sensitized TiO2 nanotube arrays under solar irradiation. Sep Purif Technol 172:303–309

    Article  CAS  Google Scholar 

  33. Dai J, Shi C, Li C, Shen X, Peng L, Wu D, Sun D, Zhang P, Zhao J (2016) A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes. Energy Environ Sci 9:3252–3261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Geng, L., Wang, Q. et al. Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles. Microchim Acta 186, 430 (2019). https://doi.org/10.1007/s00604-019-3566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3566-7

Keywords

Navigation