Skip to main content
Log in

MnO2 nanosheets as oxidase mimics for colorimetric detection of alkaline phosphatase activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive colorimetric method is described for the determination of the activity of alkaline phosphatase (ALP). It is based on the regulation of the oxidase-mimicking activity of MnO2 nanosheets. In the absence of ALP, MnO2 nanosheets are capable of catalyzing the oxidation of the colorless substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen to form a blue oxidized product (TMB Ox) with an absorption peak at 652 nm. In the presence of ALP and its substrate ascorbic acid-2-phosphate, the latter is hydrolyzed to form ascorbic acid (AA). AA triggers the decomposition of MnO2 nanosheets by reducing MnO2 to Mn2+, thereby weakening the enzyme mimicking activity of the MnO2 nanosheets and causing a drop in absorbance. The drop in absorbance at 652 nm is related to the ALP activity in the range from 0.05–10 m-units per mL (mU·mL−1), and the detection limit is 0.05 mU·mL−1. The method was applied to the determination of ALP in spiked calf serum samples and gave satisfactory results.

Schematic presentation of a facile and sensitive colorimetric method for detecting the activity of alkaline phosphatase (ALP) based on enzymatic regulation of the oxidase-mimicking activity of MnO2 nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Millan JL (2006) Alkaline phosphatases : structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2(2):335–341

    Article  CAS  Google Scholar 

  2. Ma JL, Yin BC, Wu X, Ye BC (2016) Copper-mediated DNA-Scaffolded silver nanocluster on-off switch for detection of pyrophosphate and alkaline phosphatase. Anal Chem 88(18):9219–9225

    Article  CAS  Google Scholar 

  3. Wang C, Gao J, Cao Y, Tan H (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81

    Article  CAS  Google Scholar 

  4. He Y, Jiao B (2017) Determination of the activity of alkaline phosphatase based on the use of ssDNA-templated fluorescent silver nanoclusters and on enzyme-triggered silver reduction. Microchim Acta 184(10):4167–4173

    Article  CAS  Google Scholar 

  5. Liu X, Fan N, Wu L, Wu C, Zhou Y, Li P, Tang B (2018) Lighting up alkaline phosphatase in drug-induced liver injury using a new chemiluminescence resonance energy transfer nanoprobe. Chem Commun (Camb) 54(88):12479–12482

    Article  CAS  Google Scholar 

  6. Hu Q, Zhou B, Dang P, Li L, Kong J, Zhang X (2017) Facile colorimetric assay of alkaline phosphatase activity using Fe (II)-phenanthroline reporter. Anal Chim Acta 950:170–177

    Article  CAS  Google Scholar 

  7. Zhang Z, Chen Z, Wang S, Cheng F, Chen L (2015) Iodine-mediated etching of gold Nanorods for Plasmonic ELISA based on colorimetric detection of alkaline phosphatase. ACS Appl Mater Inter 7(50):27639–27645

    Article  CAS  Google Scholar 

  8. Song H, Wang H, Li X, Peng Y, Pan J, Niu X (2018) Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce (IV) ions. Anal Chim Acta 1044:154–161

    Article  CAS  Google Scholar 

  9. Wu S, Duan N, Qiu Y, Li J, Wang Z (2017) Colorimetric aptasensor for the detection of salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics. Int J Food Microbiol 261:42–48

    Article  CAS  Google Scholar 

  10. Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W (2014) Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc 136(32):11220–11223

    Article  CAS  Google Scholar 

  11. Han L, Zhang H, Chen D, Li F (2018) Protein-directed metal oxide Nanoflakes with tandem enzyme-like characteristics: colorimetric glucose sensing based on one-pot enzyme-free Cascade catalysis. Adv Funct Mater 28(17):1800018

    Article  Google Scholar 

  12. He L, Lu Y, Wang F, Jing W, Chen Y, Liu Y (2018) Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensor Actuat B-Chem 254:468–474

    Article  CAS  Google Scholar 

  13. Xiao T, Sun J, Zhao J, Wang S, Liu G, Yang X (2018) FRET effect between fluorescent Polydopamine nanoparticles and MnO2 Nanosheets and its application for sensitive sensing of alkaline phosphatase. ACS Appl Mater Inter 10(7):6560–6569

    Article  CAS  Google Scholar 

  14. Ge J, Cai R, Chen X, Wu Q, Zhang L, Jiang Y, Cui C, Wan S, Tan W (2019) Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione. Talanta 195:40–45

    Article  CAS  Google Scholar 

  15. Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018) MnO2 Nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90(4):2618–2624

    Article  CAS  Google Scholar 

  16. Ge J, Xing K, Geng X, Hu YL, Shen XP, Zhang L, Li ZH (2018) Human serum albumin templated MnO2 nanosheets are oxidase mimics for colorimetric determination of hydrogen peroxide and for enzymatic determination of glucose. Mikrochim Acta 185(12):559

    Article  Google Scholar 

  17. Liu J, Meng L, Fei Z, Dyson PJ, Zhang L (2018) On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in wonton-like 3D nanozyme oxidase mimics. Biosens Bioelectron 121:159–165

    Article  CAS  Google Scholar 

  18. Sun Y, Tan H, Li Y (2018) A colorimetric assay for acetylcholinesterase activity and inhibitor screening based on the thiocholine-induced inhibition of the oxidative power of MnO2 nanosheets on 3,3′,5,5′-tetramethylbenzidine. Mikrochim Acta 185(10):446

    Article  Google Scholar 

  19. He Y, Wang C, Zhao Q, Zhang Y, Chen A, Pang J, Fang Q, Cui Y, Jiao B (2017) Facile and sensitive fluorescence sensing of alkaline phosphatase activity using NMM/G-quadruplex. Talanta 172:171–175

    Article  CAS  Google Scholar 

  20. Liu J, Meng L, Fei Z, Dyson PJ, Jing X, Liu X (2017) MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron 90:69–74

    Article  CAS  Google Scholar 

  21. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  Google Scholar 

  22. Darabdhara G, Boruah PK, Das MR (2018) Colorimetric determination of glucose in solution and via the use of a paper strip by exploiting the peroxidase and oxidase mimicking activity of bimetallic Cu-Pd nanoparticles deposited on reduced graphene oxide, graphitic carbon nitride, or MoS2 nanosheets. Microchim Acta 186(1)

  23. Wang C, Tang G, Tan H (2018) Colorimetric determination of mercury (II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Mikrochim Acta 185(10):475

    Article  Google Scholar 

  24. Yan X, Song Y, Wu X, Zhu C, Su X, Du D, Lin Y (2017) Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 9(6):2317–2323

    Article  CAS  Google Scholar 

  25. Na W, Li N, Xingguang S (2018) Enzymatic growth of single-layer MnO2 nanosheets in situ: application to detect alkaline phosphatase and ascorbic acid in the presence of sulfanilic acid functionalized graphene quantum dots. Sensor Actuat B-Chem 274:172–179

    Article  CAS  Google Scholar 

  26. He L, Wang F, Chen Y, Liu Y (2018) Rapid and sensitive colorimetric detection of ascorbic acid in food based on the intrinsic oxidase-like activity of MnO2 nanosheets. Luminescence 33(1):145–152

    Article  CAS  Google Scholar 

  27. Hu Q, He M, Mei Y, Feng W, Jing S, Kong J, Zhang X (2017) Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu (II)-phenanthroline complex. Talanta 163:146–152

    Article  CAS  Google Scholar 

  28. Han X, Han M, Ma L, Qu F, Kong RM, Qu F (2019) Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer. Talanta 194:55–62

    Article  CAS  Google Scholar 

  29. Gao Z, Deng K, Wang XD, Miro M, Tang D (2014) High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Appl Mater Inter 6(20):18243–18250

    Article  CAS  Google Scholar 

  30. Lin C, Zheng H, Sun M, Guo Y, Luo F, Guo L, Qiu B, Lin Z, Chen G (2018) Highly sensitive colorimetric aptasensor for ochratoxin a detection based on enzyme-encapsulated liposome. Anal Chim Acta 1002:90–96

    Article  CAS  Google Scholar 

  31. Zhou CH, Zi QJ, Wang J, Zhao WY, Cao Q (2018) Determination of alkaline phosphatase activity and of carcinoembryonic antigen by using a multicolor liquid crystal biosensor based on the controlled growth of silver nanoparticles. Mikrochim Acta 186(1):25

    Article  Google Scholar 

  32. Yang J, Zheng L, Wang Y, Li W, Zhang J, Gu J, Fu Y (2016) Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase. Biosens Bioelectron 77:549–556

    Article  CAS  Google Scholar 

  33. Tang Z, Zhang H, Ma C, Gu P, Zhang G, Wu K, Chen M, Wang K (2018) Colorimetric determination of the activity of alkaline phosphatase based on the use of cu (II)-modulated G-quadruplex-based DNAzymes. Mikrochim Acta 185(2):109

    Article  Google Scholar 

  34. Wu T, Hou W, Ma Z, Liu M, Liu X, Zhang Y, Yao S (2019) Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian blue nanocubes. Microchim Acta 186(2):123

    Article  Google Scholar 

  35. Liu SG, Han L, Li N, Xiao N, Ju YJ, Li NB, Luo HQ (2018) A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes. J Mater Chem B 6(18):2843–2850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 21405125), the Natural Science Foundation Project of CQ (No. cstc2018jscx-msybX0263) and the Fundamental Research Funds for the Central Universities (No. XDJK2019C026) for kindly support. In addition, the authors also thank China Agriculture Research System (No. CARS-27), National Risk Assessment Program for Agricultural Products Quality and Safety (No. GJFP2019003 and GJFP2019013) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue He.

Ethics declarations

The author(s) declare that they have no competing interests.

All procedures performed in studies involving animals were in accordance with the ethical standards of Chinese laws and guidelines (GKFCZ2001545).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Zhou, J., Ma, J. et al. MnO2 nanosheets as oxidase mimics for colorimetric detection of alkaline phosphatase activity. Microchim Acta 186, 408 (2019). https://doi.org/10.1007/s00604-019-3519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3519-1

Keywords

Navigation