Skip to main content
Log in

Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite was prepared from graphene functionalized with 3,4,9,10-perylene tetracarboxylic acid and chitosan (rGO-PTCA-chitosan) by a chemical method. It involves non-covalent functionalization of rGO with PTCA followed by amidation reaction with chitosan. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrochemical methods were used to characterize the composites. By combining the chiral features of chitosan and the excellent electrochemical behaviors of rGO-PTCA, a graphene-based material with enantioselectivity was constructed for electrochemical chiral recognition of tryptophan (Trp) enantiomers. A glassy carbon electrode (GCE) modified with rGO-PTCA-chitosan had a higher recognition capability for L-Trp than for D-Trp. Best operated at a working voltage near 0.78 V (vs. SCE), the enantioselectivity coefficient is 3.0. The sensor has a linear response in the 1 mM to 10 mM Trp concentration range and a 1.2 μM detection limit (at S/N = 3) for L-Trp, and of 3.0 μM to D-Trp. The sensor was successfully used to detect Trp enantiomers in real samples, and a recognition mechanism is presented.

Schematic presentation of a composoie prepared by graphene functionalized with 3,4,9,10-perylene tetracarboxylic acid and chitosan (rGO-PTCA-chitosan) via a chemical method. It involves non-covalent functionalization of rGO with PTCA followed by amidation reaction with chitosan and voltammetric determination of tryptophan enantiomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu D, Tan W, Yu Y, Yang B, Li H, Kong Y (2018) A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Anal Chim Acta 1033:58–64

    Article  CAS  Google Scholar 

  2. Niu X, Yang X, Mo Z, Guo R, Liu N, Zhao P, Ouyang M (2019) Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin. Electrochim Acta 297:650–659

    Article  CAS  Google Scholar 

  3. Song J, Yang C, Ma J, Han Q, Ran P, Fu Y (2018) Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Microchim Acta 185:230

    Article  Google Scholar 

  4. Zhang J, Tan W, Tao Y, Deng L, Qin Y, Kong Y (2018) A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers. Electrochem Commun 86:57–62

    Article  CAS  Google Scholar 

  5. Tang S, Bin Q, Chen W, Bai ZW, Huang SH (2016) Chiral stationary phases based on chitosan bis (methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography. J Chromatogr A 1440:112–122

    Article  CAS  Google Scholar 

  6. Wang C, Wu E, Wu X, Xu X, Zhang G, Pu L (2015) Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition. J Am Chem Soc 137:3747–3750

    Article  CAS  Google Scholar 

  7. Song G, Xu C, Li B (2015) Visual chiral recognition of mandelic acid enantiomers with L-tartaric acid-capped gold nanoparticles as colorimetric probes. Sensor Actuat B-Chem 215:504–509

    Article  CAS  Google Scholar 

  8. Liu C, Li B, Xu C (2014) Colorimetric chiral discrimination and determination of enantiometric excess of D/L-tryptophan using silver nanoparticles. Microchim Acta 181:1407–1413

    Article  CAS  Google Scholar 

  9. Guo HS, Kim JM, Chang SM, Kim WS (2009) Chiral recognition of mandelic acid by L-phenylalanine-modified sensor using quartz crystal microbalance. Biosens Bioelectron 24:2931–2934

    Article  CAS  Google Scholar 

  10. Yao Y, Song P, Wen X, Deng M, Wang J, Guo X (2017) Chiral separation of 12 pairs of enantiomers by capillary electrophoresis using heptakis-(2, 3-diacetyl-6-sulfato)-β-cyclodextrin as the chiral selector and the elucidation of the chiral recognition mechanism by computational methods. J Sep Sci 40:2999–3007

    Article  CAS  Google Scholar 

  11. Zhang L, Wang G, Xiong C, Zheng L, He J, Ding Y, Qiu L (2018) Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosens Bioelectron 105:121–128

    Article  Google Scholar 

  12. Liang S, Huang SH, Chen W, Bai ZW (2017) High-performance chiral stationary phases based on chitosan derivatives with a branched-chain alkyl urea. Anal Chim Acta 985:183–193

    Article  CAS  Google Scholar 

  13. Kotake M, Sakan T, Nakamura N, Senoh S (1951) Resolution into optical isomers of some amino acids by paper chromatography. J Am Chem Soc 73:2973–2974

    Article  CAS  Google Scholar 

  14. Tao Y, Chu F, Gu X, Kong Y, Lv Y, Deng L (2018) A novel electrochemical chiral sensor for tyrosine isomers based on a coordination-driven self-assembly. Sensor Actuat B-Chem 255:255–261

    Article  CAS  Google Scholar 

  15. Lei P, Zhou Y, Zhang G, Zhang Y, Zhang C, Hong S, Shuang S (2019) A highly efficient chiral sensing platform for tryptophan isomers based on a coordination self-assembly. Talanta 195:306–312

    Article  CAS  Google Scholar 

  16. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30:5849–5855

    Article  CAS  Google Scholar 

  17. Dai H, Feng N, Li J, Zhang J, Li W (2019) Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sensor Actuat B-Chem 283:786–792

    Article  CAS  Google Scholar 

  18. Liu J, Ma Q, Huang Z, Liu G, Zhang H (2018) Recent Progress in Graphene-based Noble-metal Nanocomposites for Electrocatalytic applications. Adv Mater 1:1800696

    Google Scholar 

  19. Wang Y, Wang Y, Yang Y (2018) Graphene-polymer Nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv Energy Mater 8:1800961

    Article  Google Scholar 

  20. Liu B, Yang M, Chen H, Liu Y, Yang D, Li H (2018) Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J Power Sources 397:1–10

    Article  CAS  Google Scholar 

  21. Lei C, Chen H, Cao J, Yang J, Qiu M, Xia Y, Lei L (2018) Fe-N4 sites embedded into carbon Nanofiber integrated with electrochemically exfoliated Graphene for oxygen evolution in acidic medium. Adv Energy Mater 8:1801912

    Article  Google Scholar 

  22. Ruse E, Buzaglo M, Pri-Bar I, Shunak L, Nadiv R, Pevzner S, Regev O (2018) Hydrogen storage kinetics: the graphene nanoplatelet size effect. Carbon 130:369–376

    Article  CAS  Google Scholar 

  23. Wang B, Ryu J, Choi S, Song G, Hong D, Hwang C, Park S (2018) Folding Graphene film yields high areal energy storage in Lithium-ion batteries. ACS Nano 12:1739–1746

    Article  CAS  Google Scholar 

  24. Borenstein A, Strauss V, Kowal MD, Yoonessi M, Muni M, Anderson M, Kaner RB (2018) Laser-reduced graphene-oxide/ferrocene: a 3-D redox-active composite for supercapacitor electrodes. J Mater Chem A 6:20463–20472

    Article  CAS  Google Scholar 

  25. Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797

    Article  CAS  Google Scholar 

  26. Worsley KA, Ramesh P, Mandal SK, Niyogi S, Itkis ME, Haddon RC (2007) Soluble graphene derived from graphite fluoride. Chem Phys Lett 445:51–56

    Article  CAS  Google Scholar 

  27. Gan S, Zhong L, Gao L, Han D, Niu L (2016) Electrochemically driven surface-confined acid/base reaction for an ultrafast H+ supercapacitor. J Am Chem Soc 138:1490–1493

    Article  CAS  Google Scholar 

  28. Yoo MJ, Park HB (2019) Effect of hydrogen peroxide on properties of graphene oxide in hummers method. Carbon 141:515–522

    Article  CAS  Google Scholar 

  29. Hu Y, Hua S, Li F, Jiang Y, Bai X, Li D, Niu L (2011) Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing. Biosens Bioelectron 26:4355–4361

    Article  CAS  Google Scholar 

  30. Wei W, Qu K, Ren J, Qu X (2011) Chiral detection using reusable fluorescent amylose-functionalized graphene. Chem Sci 2:2050–2056

    Article  CAS  Google Scholar 

  31. Çevikkalp SA, Löker GB, Yaman M, Amoutzopoulos B (2016) A simplified HPLC method for determination of tryptophan in some cereals and legumes. Food Chem 193:26–29

    Article  Google Scholar 

  32. Zhang L, Xu C, Liu C, Li B (2014) Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Anal Chim Acta 809:123–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51262027), the State Key Laboratory of Solidification Processing in NWPU (SKLSP201754), the Science and Technology Project Gansu Province (17YF1GA017), the Research Project of Higher Education in Gansu Province (2017A-002) and the Science and Technology Project Gansu Province (17JR5RA082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunli Mo.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Niu, X., Mo, Z. et al. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Microchim Acta 186, 333 (2019). https://doi.org/10.1007/s00604-019-3442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3442-5

Keywords

Navigation