Skip to main content
Log in

Determination of the activity of uracil-DNA glycosylase by using two-tailed reverse transcription PCR and gold nanoparticle-mediated silver nanocluster fluorescence: a new method for gene therapy-related enzyme detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors present a fluorometric method for ultrasensitive determination of the activity of uracil-DNA glycosylase (UDG). It is based on the use of two-tailed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and an entropy-driven reaction. The assay involves the following steps: (1) UDG-driven uracil excision repair, (2) two-tailed RT-qPCR-mediated amplification, (3) RNA polymerase-aided amplification, and (4) DNA-modified silver nanoclusters (AgNCs) as a transducer to produce a fluorescent signal. UDG enables uracil to be removed from U·A pairs in DNA1 and produces a depurinated/depyrimidinated site that is readily cleaved by endonuclease IV (Endo IV). The cleaved DNA contains the T7 RNA polymerase primer for the T7 RNA polymerase amplification which produces a large number of microRNA sequences. Subsequent two-tailed RT-qPCR leads to the formation of a prolonged DNA termed DNA3. The prolonged part of DNA3 is then hybridized with an added DNA4/DNA5 duplex, where DNA5 is labeled with gold nanoparticles (AuNPs), and DNA 4 is labeled with AgNCs. The AuNPs quench the fluorescence of the AgNCs. The duplex has a toehold to hybridize the prolong part of DNA3. This results in the formation of a DNA5/DNA3 duplex due to strand displacement (by replacing the DNA4 in the DNA4/DNA5 duplex). DNA4 is released and moves away from the AuNPs. This results in restored AgNC fluorescence, best measured at excitation/emission wavelengths of 575/635 nm. The method has a detection limit as low as 0.1 mU mL−1 of UDG activity (3σ criterion) with a range of 0.001–0.01 U mL−1. It was used to measure UDG activity in cell lysates. Conceivably, it may be used to screen for UDG inhibitors such as Ugi.

Schematic presentation of the two-tailed RT-qPCR assay platform for ultrasensitive detection of uracil-DNA glycosylase (UDG). Two-tailed RT-qPCR-mediated amplification and RNA polymerase-aided amplification are utilized for signal amplification. DNA-modified silver nanoclusters (AgNCs) are used as a transducer to produce a fluorescent signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marnett LJ, Plastaras JP (2001) Endogenous DNA damage and mutation. Trends Genet 17(4):214–221

    Article  CAS  Google Scholar 

  2. Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in Cancer. Cell 168(4):644–656

    Article  CAS  Google Scholar 

  3. Wang Y, Wang Y, Li D, Xu J, Ye C (2018) Detection of nucleic acids and elimination of carryover contamination by using loop-mediated isothermal amplification and antarctic thermal sensitive uracil-DNA-glycosylase in a lateral flow biosensor: application to the detection of Streptococcus pneumoni. Microchim Acta 185(4):212

    Article  Google Scholar 

  4. Prorok P, Alili D, Saint-Pierre C, Gasparutto D, Zharkov DO, Ishchenko AA, Tudek B, Saparbaev MK (2013) Uracil in duplex DNA is a substrate for the nucleotide incision repair pathway in human cells. Pnas 110(39):E3695–E3703

    Article  CAS  Google Scholar 

  5. Sousa MM, Krokan HE, Slupphaug G (2007) DNA-uracil and human pathology. Mol Asp Med 28(3):276–306

    Article  CAS  Google Scholar 

  6. Du Y-C, Cui Y-X, Li X-Y, Sun G-Y, Zhang Y-P, Tang A-N, Kim K, Kong D-M (2018) Terminal Deoxynucleotidyl transferase and T7 exonuclease-aided amplification strategy for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem 90(14):8629–8634

    Article  CAS  Google Scholar 

  7. Mcwilliams MA, Anka FH, Balkus KJ, Slinker JD (2014) Sensitive and selective real-time electrochemical monitoring of DNA repair. Biosens Bioelectron 54(54C):541–546

    Article  CAS  Google Scholar 

  8. Liu B, Yang X, Wang K, Tan W, Li H, Tang H (2007) Real-time monitoring of uracil removal by uracil-DNA glycosylase using fluorescent resonance energy transfer probes. Anal Biochem 366(2):237–243

    Article  CAS  Google Scholar 

  9. Wu Y, Wang L, Zhu J, Jiang W (2015) A DNA machine-based fluorescence amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Biosens Bioelectron 68:654–659

    Article  CAS  Google Scholar 

  10. Dong J, Lian J, Jin Y, Li B (2017) Guanine-based chemiluminescence resonance energy transfer biosensing platform for the specific assay of uracil-DNA glycosylase activity. Anal Methods 9(2):276–281

    Article  CAS  Google Scholar 

  11. Tao Y, Wei Q (2018) Plasmonic molecular assays: recent advances and applications for mobile health. Nano Res:1–35

  12. Viturro E, Altenhofer C, Zölch B, Burgmaier A, Riedmaier I, Pfaffl MW (2014) Microfluidic high-throughput reverse-transcription quantitative PCR analysis of liver gene expression in lactating animals. Microchim Acta 181(13–14):1725–1732

    Article  CAS  Google Scholar 

  13. Pinho R, Guedes LC, Soreq L, Lobo PP, Mestre T, Coelho M, Rosa MM, Gonçalves N, Wales P, Mendes T (2016) Correction: Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles. Plos One 11(6):e0157852

    Article  Google Scholar 

  14. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39(4):519–525

    Article  CAS  Google Scholar 

  15. Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M (2017) Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res 45(15):e144

    Article  Google Scholar 

  16. Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853):1121–1125

    Article  CAS  Google Scholar 

  17. Lv Y, Cui L, Peng R, Zhao Z, Qiu L, Chen H, Jin C, Zhang XB, Tan W (2015) Entropy Beacon: a hairpin-free DNA amplification strategy for efficient detection of nucleic acids. Anal Chem 87(23):11714–11720

    Article  CAS  Google Scholar 

  18. He X, Zeng T, Li Z, Wang G, Ma N (2016) Catalytic molecular imaging of MicroRNA in living cells by DNA-programmed nanoparticle disassembly. Angew Chem Int Ed 55(9):3073–3076

    Article  CAS  Google Scholar 

  19. Zhou H, Liu J, Xu J-J, Zhang S-S, Chen H-Y (2018) Optical nano-biosensing interface nucleic acid amplification strategy: construction and application. Chem Soc Rev 47(6):1996–2019

  20. Zhang K, Yang X-J, Zhao W, Xu M-C, Xu J-J, Chen H-Y (2017) Regulation and imaging of gene expression via an RNA interference antagonistic biomimetic probe. Chem Sci 8(7):4973–4977

    Article  CAS  Google Scholar 

  21. Liu J, Cui M, Niu L, Zhou H, Zhang S (2016) Enhanced peroxidase-like properties of graphene-hemin-composite decorated with Au nanoflowers as electrochemical aptamer biosensor for the detection of K562 leukemia cancer cells. Chem Eur J 22(50):18001–18008

  22. Zhang K, Wang K, Zhu X, Gao Y, Xie M (2014) Rational design of signal-on biosensors by using photoinduced electron transfer between ag nanoclusters and split G-quadruplex halves-hemin complexes. Chem Commun 50(91):14221–14224

    Article  CAS  Google Scholar 

  23. Zhang K, Wang K, Xie M, Zhu X, Xu L, Yang R, Huang B, Zhu X (2014) DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase. Biosens Bioelectron 52(0):124–128

    Article  CAS  Google Scholar 

  24. Zhang K, Wang K, Zhu X, Xie M (2017) Ultrasensitive fluorescence detection of transcription factors based on kisscomplex formation and the T7 RNA polymerase amplification method. Chem Commun 53(43):5846–5849

    Article  CAS  Google Scholar 

  25. Wang LJ, Ren M, Zhang Q, Tang B, Zhang CY (2017) Excision repair-initiated enzyme-assisted bicyclic Cascade signal amplification for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem 89(8):4488–4494

    Article  CAS  Google Scholar 

  26. Zhu J, Hao Q, Liu Y, Guo Z, Rustam B, Jiang W (2018) Integrating DNA structure switch with branched hairpins for the detection of uracil-DNA glycosylase activity and inhibitor screening. Talanta 179:51–56

    Article  CAS  Google Scholar 

  27. Zhang Y, Li QN, Li CC, Zhang CY (2018) Label-free and high-throughput bioluminescence detection of uracil-DNA glycosylase in cancer cells through tricyclic cascade signal amplification. Chem Commun (Camb) 54(51):6991–6994

    Article  CAS  Google Scholar 

  28. Zhang XF, Li N, Ling Y, Li NB, Luo HQ (2018) Sensitive detection of active uracil-DNA glycosylase via an exonuclease III-assisted cascade multi-amplification fluorescence DNA machine. Sensors Actuators B Chem 271:9–14

    Article  CAS  Google Scholar 

  29. Zhang X, Wu T, Wang H, Zou Y, Chen W, Zhao M, Wang S, Xiao X (2018) A time-dependent fluorescent biosensor for uracil-DNA glycosylase detection based on the uracil inhibition effect towards archaebacterial DNA polymerases. Sensors Actuators B Chem 270:277–282

    Article  CAS  Google Scholar 

  30. Ren R, Shi K, Yang J, Yuan R, Xiang Y (2018) DNA three way junction-mediated recycling amplification for sensitive electrochemical monitoring of uracil-DNA glycosylase activity and inhibition. Sensors Actuators B Chem 258:783–788

    Article  CAS  Google Scholar 

  31. Xu X, Wang L, Wu Y, Jiang W (2017) Uracil removal-inhibited ligase reaction in combination with catalytic hairpin assembly for the sensitive and specific detection of uracil-DNA glycosylase activity. Analyst 142(24):4655–4660

    Article  CAS  Google Scholar 

  32. Du W, Li J, Xiao F, Yu R, Jiang J (2017) A label-free and highly sensitive strategy for uracil-DNA glycosylase activity detection based on stem-loop primer-mediated exponential amplification (SPEA). Anal Chim Acta 991:127–132

    Article  CAS  Google Scholar 

  33. Jiao F, Qian P, Qin Y, Xia Y, Deng C, Nie Z (2016) A novel and label-free biosensors for uracil-DNA glycosylase activity based on the electrochemical oxidation of guanine bases at the graphene modified electrode. Talanta 147:98–102

    Article  CAS  Google Scholar 

  34. Nie H, Wang W, Li W, Nie Z, Yao S (2015) A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst 140(8):2771–2777

    Article  CAS  Google Scholar 

  35. Lu YJ, Hu DP, Deng Q, Wang ZY, Huang BH, Fang YX, Zhang K, Wong WL (2015) Sensitive and selective detection of uracil-DNA glycosylase activity with a new pyridinium luminescent switch-on molecular probe. Analyst 140(17):5998–6004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21705061), the Jiangsu Provincial Key Medical Discipline (Laboratory) (ZDXKA2016017) and the Innovation Capacity Development Plan of Jiangsu Province (BM2018023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zhang or Minhao Xie.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Huang, W., Huang, Y. et al. Determination of the activity of uracil-DNA glycosylase by using two-tailed reverse transcription PCR and gold nanoparticle-mediated silver nanocluster fluorescence: a new method for gene therapy-related enzyme detection. Microchim Acta 186, 181 (2019). https://doi.org/10.1007/s00604-019-3307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3307-y

Keywords

Navigation