Skip to main content
Log in

Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric and fluorescent pH probe was designed by doping carbon dots (C-dots) with Eu(III), Tb(III) and 2,6-pyridinedicarboxylic acid (DPA). The resulting nanoparticles were applied as fluorescent indicators for pH values (best detected at excitation/emission wavelengths of 272/545, 614 nm). The pH induced optical effects are due to pH induced variations in energy transfer. The fluorescence of the probe shows a continuous color variation, and a linear change with pH values in the range from 3.0 to 10.0 can be established by using a Commission Internationale de L’Eclairage (CIE) chromaticity diagram. This new kind of pH nanoprobe is more accurate than previously reported pH indicator probes because the pH value can be calculated by using chromaticity coordinates that only depend on the chromaticity. The pH nanoprobe was applied to visualize pH values in human breast adenocarcinoma cells (MCF-7).

Carbon dots modified with Eu(III) and Tb(III) complexes of 2,6-pyridinedicarboxylic acid (DPA) were prepared. The doped carbon dots were used as a pH-sensitive nanosensor. The fluorescence chromaticity of the nanoparticles changes with the variation of pH value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Näreoja T, Deguchi T, Christ S, Peltomaa R, Prabhakar N, Fazeli E, Schäferling M (2017) Ratiometric sensing and imaging of intracellular pH using polyethylenimine-coated photon upconversion nanoprobes. Anal Chem 89:1501–1508

    Article  Google Scholar 

  2. Rupprecht C, Wingen M, Potzkei J, Gensch T, Jaeger KE, Drepper T (2017) A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH. J Biotechnol 258:25–32

    Article  CAS  Google Scholar 

  3. Bizzarri R, Serresi M, Luin S, Beltram F (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122

    Article  CAS  Google Scholar 

  4. Shrode LD, Tapper H, Grinstein S (1997) Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 29:393–399

    Article  CAS  Google Scholar 

  5. Martin C, Pedersen SF, Schwab A, Stock C (2010) Intracellular pH gradients in migrating cells. Am J Phys Cell Phys 300:490–495

    Article  Google Scholar 

  6. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    Article  CAS  Google Scholar 

  7. Zhou K, Liu H, Zhang S, Huang X, Wang Y, Huang G, Gao J (2012) Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J Am Chem Soc 134:7803–7811

    Article  CAS  Google Scholar 

  8. Schreij AM, Fon EA, McPherson PS (2016) Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 73:1529–1545

    Article  CAS  Google Scholar 

  9. Scholz F (2011) From the Leiden jar to the discovery of the glass electrode by Max Cremer. J Solid State Electrochem 15:5–14

    Article  CAS  Google Scholar 

  10. Hiruta Y, Yoshizawa N, Citterio D, Suzuki K (2012) Highly durable double sol–gel layer ratiometric fluorescent pH optode based on the combination of two types of quantum dots and absorbing pH indicators. Anal Chem 84:10650–10656

    Article  CAS  Google Scholar 

  11. Yu KK, Li K, Hou JT, Yang J, Xie YM, Yu XQ (2014) Rhodamine based pH-sensitive “intelligent” polymers as lysosome targeting probes and their imaging applications in vivo. Polym Chem 5:5804–5812

    Article  CAS  Google Scholar 

  12. Aigner D, Borisov SM, Petritsch P, Klimant I (2013) Novel near infra-red fluorescent pH sensors based on 1-aminoperylene bisimides covalently grafted onto poly (acryloylmorpholine). Chem Commun 49:2139–2141

    Article  CAS  Google Scholar 

  13. Aigner D, Borisov SM, Fernández FJO, Sánchez JFF, Saf R, Klimant I (2012) New fluorescent pH sensors based on covalently linkable PET rhodamines. Talanta 99:194–201

    Article  CAS  Google Scholar 

  14. Li SY, Wu CL, Huang CB, Lai JP, Zheng JS, Zhao YB (2007) Effects of pH on the photo-induced fluorescence enhancement of water-soluble ZnSe quantum dots. J Xiamen Univ (Nat Sci) 46:817–821

    CAS  Google Scholar 

  15. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  Google Scholar 

  16. Lu Y, Yan B (2014) A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium (III) complexes. Chem Commun 50:13323–13326

    Article  CAS  Google Scholar 

  17. Tamura K, Takashi N, Akasaka T, Roska ID, Uo M, Totsuka Y, Watari F (2004) Effects of micro/nano particle size on cell function and morphology. Key Eng Mater 254: 919–922. Trans Tech Publications

  18. Liu M, Li Z, Yang J, Jiang Y, Chen Z, Ali Z, Wang Z (2016) Cell-specific biomarkers and targeted biopharmaceuticals for breast cancer treatment. Cell Prolif 49:409–420

    Article  Google Scholar 

  19. Liu M, Yu X, Chen Z, Yang T, Yang D, Liu Q, Deng Y (2017) Aptamer selection and applications for breast cancer diagnostics and therapy. J Nanobiotechnology 15:81–96

    Article  Google Scholar 

  20. Liu Z, Song F, Song B, Jiao L, An J, Yuan J, Peng X (2018) A FRET chemosensor for hypochlorite with large stokes shifts and long-lifetime emissions. Sensors Actuators B Chem 262:958–965

    Article  CAS  Google Scholar 

  21. Wert MH, Jukes RT, Verhoeven JW (2002) The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys Chem Chem Phys 4:1542–1548

    Article  Google Scholar 

  22. Arnaud N, Vaquer E, Georges J (1998) Comparative study of the luminescent properties of europium and terbium coordinated with thenoyltrifluoroacetone or pyridine-2, 6-dicarboxylic acid in aqueous solutions. Analyst 123:261–265

    Article  CAS  Google Scholar 

  23. Kong B, Zhu A, Ding C, Zhao X, Li B, Tian Y (2012) Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24(43):5844–5848

    Article  CAS  Google Scholar 

  24. Charbonnière LJ, Hildebrandt N (2008) Lanthanide complexes and quantum dots: a bright wedding for resonance energy transfer. Eur J Inorg Chem 2008:3241–3251

    Article  Google Scholar 

  25. Chen Y, Zhang J, Zhang L, Han P, Wang L, Zhang Q (2012) Synthesis and co-luminescence properties of Tb3+-methacrylic acid-1, 10-phenanthroline complexes doped with Eu3+. Rare Metals 31:479–483

    Article  CAS  Google Scholar 

  26. Hindle AA, Hall EA (1999) Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 124:1599–1604

    Article  CAS  Google Scholar 

  27. Ali R, Saleh SM, Aly SM (2017) Fluorescent gold nanoclusters as pH sensors for the pH 5 to 9 range and for imaging of blood cell pH values. Microchim Acta 184:3309–3315

    Article  CAS  Google Scholar 

  28. Xiong H, Zheng H, Wei W, Liang J, Wei W, Zhang X, Wang SF (2016) A convenient purification method for silver nanoclusters and its applications in fluorescent ph sensors for bacterial monitoring. Biosens Bioelectron 86:164–168

    Article  CAS  Google Scholar 

  29. Sun Y, Wang X, Wang C, Tong D, Wu Q, Jiang K, Yang M (2018) Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185:83

    Article  Google Scholar 

  30. Shi B, Su Y, Zhang L, Liu R, Huang M, Zhao S (2016) Nitrogen-rich functional groups carbon nanoparticles based fluorescent ph sensor with broad-range responding for environmental and live cells applications. Biosens Bioelectron 82:233–239

    Article  CAS  Google Scholar 

  31. Terrones YT, Leskow FC, Bordoni AV, Acebedo SL, Spagnuolo CC, Wolosiuk A (2017) A silica supported tricarbocyanine based pH nanosensor with a large stokes shift and a near infrared fluorescence response: performance in vitro and in live cells. J Mater Chem B 5:4031–4034

    Article  Google Scholar 

  32. Chen H, Wang J, Shan D, Chen J, Zhang S, Lu X (2018) Dual-emitting fluorescent metal-organic framework nanocomposites as a broad-range ph sensor for fluorescence imaging. Anal Chem 90:7056–7063

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 21575023), the Natural Science Foundation of Jiangsu Province (Grant No. BK20161414) and the Postgraduate Scientific Research Innovation Program of Jiangsu Province (Grant No. KYLX15_0162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 3.95 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, Y. Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe. Microchim Acta 185, 489 (2018). https://doi.org/10.1007/s00604-018-3027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3027-8

Keywords

Navigation