Skip to main content
Log in

A molecularly imprinted chitosan doped with carbon quantum dots for fluorometric determination of perfluorooctane sulfonate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted polymer (MIP) was fabricated for selective recognition of the highly persistent pollutant perfluorooctane sulfonate (PFOS). The MIP was prepared from chitosan and doped with fluorescent carbon quantum dots (CQDs). It was characterized by fluorescence spectrophotometry, scanning electron microscopy, and Fourier transform infrared spectroscopy. The fluorescence of the CQDs, best measured at excitation/emission wavelengths of 350/460 nm, is enhanced by PFOS, and the effect is much stronger for the MIP than for the nonimprinted polymer (NIP). The imprinting factor is 2.75. The method has good specificity over sodium dodecyl sulfate (SDS), perfluorooctanoic acid (PFOA), sodium dodecyl sulfonate (SDS’), sodium dodecyl benzene sulfonate (SDBS), perfluorooctanesulfonyl fluoride (POSF), perfluorobutane sulfonate (PFBS) and 1-octanesulfonic acid sodium (OSA). Fluorescence increases linearly in the 20–200 pg·L−1 POSF concentration range in aqueous solution. The method was applied to the determination of PFOS in spiked serum and urine samples. The limits of detection are 66 and 85 pg·L−1 for serum and urine samples respectively. The recoveries ranged from to 81–98%, with relative standard deviations in the range of 1.8–8.2%. Compared with LC-MS/MS, this assay is more convenient since the material can be prepared flexibly and the method can be applied on-site.

Schematic of the fabrication of a molecularly imprinted chitosan hydrogel doped with CQDs for selective fluorometric determination of PFOS. a. The photo of chitosan hydrogel. b, c, d, e represents the hydrogel observed under UV lamp. b’, c’, d’, e’ represents the inner structure of hydrogel bead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Houde M, Czub G, Small JM, Backus S, Wang X, Alaee M, Muir DC (2008) Fractionation and bioaccumulation of perfluorooctane sulfonate (PFOS) isomers in a Lake Ontario food web. Environ Sci Technol 42:9397–9403. https://doi.org/10.1021/es800906r

    Article  CAS  PubMed  Google Scholar 

  2. Loos R, Wollgast J, Huber T, Hanke J (2007) Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in northern Italy. Anal Bioanal Chem 387:1469–1478. https://doi.org/10.1007/s00216-006-1036-7

    Article  CAS  PubMed  Google Scholar 

  3. Tittlemier SA, Pepper K, Seymour C, Moisey J, Bronson R, Cao XL, Dabeka RD (2007) Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J Agric Food Chem 55:3203–3210. https://doi.org/10.1021/es800906r

    Article  CAS  PubMed  Google Scholar 

  4. Olsen GW, Mair DC, Reagen WK, Ellefson ME, Ehresman DJ, Butenhoff JL, Zobel LR (2007) Preliminary evidence of a decline in perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations in American red Cross blood donors. Chemosphere 68:105–111. https://doi.org/10.1016/j.chemosphere.2006.12.031

    Article  CAS  PubMed  Google Scholar 

  5. Saito K, Uemura E, Atsushi I, Hiroyuki K (2010) Determination of perfluorooctanoic acid and perfluorooctane sulfonate by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Anal Chim Acta 658:141–146. https://doi.org/10.1016/j.aca.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  6. Poothong S, Boontanona SK, Boontanonb N (2012) Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry. J Hazard Mater 205:139–143. https://doi.org/10.1016/j.jhazmat.2011.12.050

    Article  CAS  PubMed  Google Scholar 

  7. Feng H, Wang NY, ThanhThuy TT, Yuan LJ, Li JZ, Cai QY (2014) Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate. Sensors Actuators B Chem 195:266–273. https://doi.org/10.1016/j.snb.2014.01.036

    Article  CAS  Google Scholar 

  8. ThanhThuy TT, Li JZ, Feng H, Cai J, Yuan LJ, Wang NY, Cai QY (2014) Molecularly imprinted polymer modified TiO2 nanotube arrays for photoelectrochemical determination of perfluorooctane sulfonate (PFOS). Sensors Actuators B Chem 190:745–751. https://doi.org/10.1016/j.snb.2013.09.048

    Article  CAS  Google Scholar 

  9. Yang S, Li Y, Wang S, Wang M, Chu M, Xia B (2018) Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review. Microchim Acta 185(112). https://doi.org/10.1007/s00604-017-2638-9

  10. Chen SH, Li AM, Zhang LZ, Gong JM (2015) Molecularly imprinted ultrathin graphitic carbon nitride nanosheets based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid. Anal Chim Acta 896:68–77. https://doi.org/10.1016/j.aca.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  11. Hua XG, Pana JL, Hua YL, Li GK (2009) Preparation and evaluation of propranolol molecularly imprinted solid-phase microextraction fiber for trace analysis of β-blockers in urine and plasma samples. J Chromatogr A 1216:190–197. https://doi.org/10.1016/j.chroma.2008.11.064

    Article  CAS  Google Scholar 

  12. Xu ZG, Hu YF, Hu YL, Li GK (2010) Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β-agonists in complex samples. J Chromatogr A 1217:3612–3618. https://doi.org/10.1016/j.chroma.2010.03.046

    Article  CAS  PubMed  Google Scholar 

  13. Liu HL, Fang GZ, Wang S (2014) Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine. Biosens Bioelectron 55:127–132. https://doi.org/10.1016/j.bios.2013.11.064

    Article  CAS  PubMed  Google Scholar 

  14. Ren XH, Liu HC, Chen LG (2015) Fluorescent detection of chlorpyrifos using Mn (II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 182:193–200. https://doi.org/10.1007/s00604-014-1317-3

    Article  CAS  Google Scholar 

  15. Dan L, Wang HF (2013) Mn-doped ZnS quantum dot imbedded two-fragment imprinting silica for enhanced room temperature phosphorescence probing of domoic acid. Anal Chem 85:4844–4848. https://doi.org/10.1021/ac400250j

    Article  CAS  PubMed  Google Scholar 

  16. Ren XH, Chen LG (2015) Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron 64:182–188. https://doi.org/10.1016/j.bios.2014.08.086

    Article  CAS  PubMed  Google Scholar 

  17. Liu JX, Chen H, Lin Z, Lin JM (2010) Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82:7380–7386. https://doi.org/10.1021/ac101510b

    Article  CAS  PubMed  Google Scholar 

  18. Chen YP, Wang DN, Yin YM, Wang LY, Wang XF, Xie MX (2012) Quantum dots capped with dummy molecularly imprinted film as luminescent sensor for the determination of tetrabromobisphenol a in water and soils. J Agric Food Chem 60:10472–10479. https://doi.org/10.1021/jf3026138

    Article  CAS  PubMed  Google Scholar 

  19. Wang HF, He Y, Ji TR, Yan XP (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81:1615–1621. https://doi.org/10.1021/ac802375a

    Article  CAS  PubMed  Google Scholar 

  20. Li HB, Li YL, Cheng J (2010) Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater 22:2451–2457. https://doi.org/10.1021/cm902856y

    Article  CAS  Google Scholar 

  21. Xu SF, Lu HZ, Li JH, Song XL, Wang AX, Chen LX, Han SB (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl Mater Interfaces 5:8146–8154. https://doi.org/10.1021/am4022076

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Qu ZB, Zeng YB, Zhou TS, Shi GY (2014) A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron 52:317–323. https://doi.org/10.1016/j.bios.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  23. Liu HL, Fang GZ, Zhu HD, Li CM, Liu CC, Wang S (2013) A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and graphene oxide for specific recognition of vitamin E. Biosens Bioelectron 47:127–132. https://doi.org/10.1016/j.bios.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  24. Hao TF, Wei X, Nie YJ, Xu YQ, Yan YS, Zhou ZP (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183:2197–2203. https://doi.org/10.1007/s00604-016-1851-2

    Article  CAS  Google Scholar 

  25. Chen BB, Liu ZX, Deng WC, Zhan L, Liu ML, Huang CZ (2016) A large-scale synthesis of photoluminescent carbon quantum dots: a self-exothermic reaction driving the formation of the nanocrystalline core at room temperature. Green Chem 18:5127–5132 http://pubs.rsc.org/en/content/articlehtml/2016/gc/c6gc01820c

    Article  CAS  Google Scholar 

  26. Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ (2013) One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins. J Mater Chem B 122:2868–2873. https://doi.org/10.1039/C6GC01820C

    Article  CAS  Google Scholar 

  27. Zhou J, Yang Y, Zhang CY (2013) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49:8605–8607. https://doi.org/10.1039/C3CC42266F

    Article  CAS  Google Scholar 

  28. Zhao HX, Liu LQ, De Liu Z, Wang Y, Zhao XJ, Huang CZ (2011) Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47:2604–2606. https://doi.org/10.1039/C0CC04399K

    Article  CAS  Google Scholar 

  29. Yang Q, Wei L, Zheng X, Xiao L (2015) Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins. Sci Rep 5(17727). https://doi.org/10.1038/srep17727

  30. Ma Y, Zhang Z, Xu Y, Ma M, Chen B, Wei L, Xiao L (2016) A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions. Talanta 161:476–481. https://doi.org/10.1016/j.talanta.2016.08.082

    Article  CAS  PubMed  Google Scholar 

  31. Yu Q, Deng SB, Yu G (2008) Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res 42:3089–3097. https://doi.org/10.1016/j.watres.2008.02.024

    Article  CAS  PubMed  Google Scholar 

  32. Hu L, Li Y, Zhang WL (2016) Characterization and application of surface-molecular-imprinted-polymer modified TiO2 nanotubes for removal of perfluorinated chemicals. Water Sci Technol 74:1417–1425. https://doi.org/10.2166/wst.2016.321

    Article  CAS  PubMed  Google Scholar 

  33. Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J 20:2254–2263. https://doi.org/10.1002/chem.201304374

    Article  CAS  PubMed  Google Scholar 

  34. Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv 2:3602–3606 http://pubs.rsc.org/en/content/articlehtml/2012/ra/c2ra00030j

    Article  CAS  Google Scholar 

  35. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542. https://doi.org/10.1007/s00604-015-1705-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21305013) and the Guangdong Provincial Key Platform and Major Scientific Research Projects for Colleges and Universities (No.2014KZDXM073, 2015KCXTD029). The authors also thanks Thonebio. Co. Ltd. for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Fan.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Li, J., Mo, L. et al. A molecularly imprinted chitosan doped with carbon quantum dots for fluorometric determination of perfluorooctane sulfonate. Microchim Acta 185, 473 (2018). https://doi.org/10.1007/s00604-018-2996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2996-y

Keywords

Navigation