Skip to main content
Log in

Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel photoelectrochemical (PEC) aptasensor with graphitic-phase carbon nitride quantum dots (g-C3N4; QDs) and reduced graphene oxide (rGO) was fabricated. The g-C3N4 QDs possess enhanced emission quantum yield (with an emission peak at 450 nm), improved charge separation ability and effective optical absorption, while rGO has excellent electron transfer capability. Altogether, this results in improved PEC performance. The method is making use of an aptamer against sulfadimethoxine (SDM) that was immobilized on electrode through π stacking interaction. Changes of the photocurrent occur because SDM as a photogenerated hole acceptor can further accelerate the separation of photoexcited carriers. Under optimized conditions and at an applied potential of +0.2 V, the aptasensor has a linear response in the 0.5 nM to 80 nM SDM concentration range, with a 0.1 nM detection limit (at S/N = 3). The method was successfully applied to the analysis of SDM in tap, lake and waste water samples.

Graphitic-phase carbon nitride (g-C3N4) quantum dots (QDs) and reduced graphene oxide (rGO) were used to modify fluorine-doped SnO2 (FTO) electrodes for use in a photoelectrochemical (PEC) aptasensor. SDM oxidized by the hole on valance band (VB) of g-C3N4 QDs promote the separation of electron in the conductive band (CB), which made the changes of photocurrent signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almeida SAA, Montenegro MCBSM, Sales MGF (2013) New and low cost plastic membrane electrode with low detection limits for sulfadimethoxine determination in aquaculture waters. J Electroanal Chem 709:39–45. https://doi.org/10.1016/j.jelechem.2013.09.029

    Article  CAS  Google Scholar 

  2. Song KM, Jeong E, Jeon W, Jo H, Ban C (2012) A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine. Biosens Bioelectron 33:113–119. https://doi.org/10.1016/j.bios.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  3. Turco A, Corvaglia S, Mazzotta E (2015) Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters. Biosens Bioelectron 63:240–247. https://doi.org/10.1016/j.bios.2014.07.045

    Article  CAS  PubMed  Google Scholar 

  4. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–317. https://doi.org/10.1038/nrmicro3439

    Article  CAS  PubMed  Google Scholar 

  5. Chen AL, Jiang XL, Zhang WW, Gang C, Zhao Y, Tunio TM, Liu JC, Lv ZZ, Li C, Yang SM (2013) High sensitive rapid visual detection of sulfadimethoxine by label-free aptasensor. Biosens Bioelectron 42:419–425. https://doi.org/10.1016/j.bios.2012.10.059

    Article  CAS  PubMed  Google Scholar 

  6. Franek M, Kolar V, Deng AP, Crooks S (1999) Determination of sulphadimindine (sulfamethazine) residues in milk, plasma, urine and edible tissues by sensitive ELISA. Food Agric Immunol 11:339–349. https://doi.org/10.1080/09540109999726

    Article  CAS  Google Scholar 

  7. Lindsey ME, Meyer M, Thurman EM (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73:4640–4646. https://doi.org/10.1021/ac010514w

    Article  CAS  PubMed  Google Scholar 

  8. Nebot C, Regal P, Miranda JM, Fente C, Cepeda A (2013) Rapid method for quantification of nine sulfonamides in bovine milk using HPLC/MS/MS and without using SPE. Food Chem 141:2294–2299. https://doi.org/10.1016/j.foodchem.2013.04.099

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Fernandez V, Dominguez-Vega E, Crego AL, Carcia MA, Marina ML (2012) Recent advances in the analysis of antibiotics by CE and CEC. Electrophoresis 33:127–146. https://doi.org/10.1002/elps.201100409

    Article  CAS  PubMed  Google Scholar 

  10. Zhang XR, Liu MS, Liu HX, Zhang SS (2014) Low-toxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens Bioelectron 56:307–312. https://doi.org/10.1016/j.bios.2014.01.033

    Article  CAS  PubMed  Google Scholar 

  11. Zhao WW, Xu JJ, Chen HY (2014) Photoelectrochemical DNA biosensors. Chem Rev 114:7421–7441. https://doi.org/10.1021/cr500100j

    Article  CAS  PubMed  Google Scholar 

  12. Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical aptasensing. TrAC Trends Anal Chem 82:307–315. https://doi.org/10.1016/j.trac.2016.06.020

    Article  CAS  Google Scholar 

  13. Li RZ, Liu Y, Cheng L, Yang CZ, Zhang JD (2014) Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites. Anal Chem 86:9372–9375. https://doi.org/10.1021/ac502616n

    Article  CAS  PubMed  Google Scholar 

  14. Xu L, Xia JX, Wang LG, Ji HY, Qian J, Xu H, Wang K, Li HM (2014) Graphitic carbon nitride nanorods for photoelectrochemical sensing of trace copper(II) ions. Eur J Inorg Chem 2014(23):3665–3673. https://doi.org/10.1002/ejic.201402051

    Article  CAS  Google Scholar 

  15. Tay Q, Kanhere P, Ng CF, Chen S, Chakraborty S, Huan ACH, Sum TC, Ahuja R, Chen Z (2015) Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem Mater 27:4930–4933. https://doi.org/10.1021/acs.chemmater.5b02344

    Article  CAS  Google Scholar 

  16. Li XB, Hartley G, Ward AJ, Young PA, Masters AF, Mascheyer T (2015) Hydrogenated defects in graphitic carbon nitride nanosheets for improved photocatalytic hydrogen evolution. J Phys Chem C 119:14938–14946. https://doi.org/10.1021/acs.jpcc.5b03538

    Article  CAS  Google Scholar 

  17. Yue WJ, Han SK, Peng RX, Shen W, Geng HW, Wu F, Tao SW, Wang MT (2010) CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells, CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J Mater Chem 20:7570–7578. https://doi.org/10.1039/c0jm00611d.

    Article  CAS  Google Scholar 

  18. Bandyopadhyay A, Ghosh D, Kaley NM, Pati SK (2017) Photocatalytic activity of g-C3N4 quantum dots in visible light: effect of physicochemical modifications. J Phys Chem C 121:1982–1989. https://doi.org/10.1021/acs.jpcc.6b11520

    Article  CAS  Google Scholar 

  19. Li YH, Lv KL, Ho WK, Dong F, Wu XF, Xia Y (2017) Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl Catal B Environ 202:611–619. https://doi.org/10.1016/j.apcatb.2016.09.055

    Article  CAS  Google Scholar 

  20. Rong MC, Cai ZX, Xie L, Lin CS, Song XH, Luo F, Wang YR, Chen X (2016) Study on the ultrahigh quantum yield of fluorescent P, O-g-C3N4 nanodots and its application in cell imaging. Chem Eur J 22:9387–9395. https://doi.org/10.1002/chem.201601065

    Article  CAS  PubMed  Google Scholar 

  21. Pang XH, Bian HJ, Wang WJ, Liu C, Khan MS, Wang Q, Qi JN, Wei Q, Du B (2017) A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens Bioelectron 91:456–464. https://doi.org/10.1016/j.bios.2016.12.059

    Article  CAS  PubMed  Google Scholar 

  22. Han Q, Chen N, Zhang J, Qu LT (2017) Graphene/graphitic carbon nitride hybrids for catalysis. Mater Horiz 4:832–850. https://doi.org/10.1039/c7mh00379j

    Article  CAS  Google Scholar 

  23. Guex LG, Sacchi B, Peuvot KF, Andersson RL, Pourrahimi AM, Strom V, Farris S, Olsson RT (2017) Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9:9562–9571. https://doi.org/10.1039/c7nr02943h

    Article  CAS  PubMed  Google Scholar 

  24. Zhou SW, Wang YY, Zhu JJ (2016) Simultaneous detection of tumor cell apoptosis regulators Bcl-2 and Bax through a dual-signal-marked electrochemical immunosensor. ACS Appl Mater Interfaces 8:7674–7682. https://doi.org/10.1021/acsami.6b01010

    Article  CAS  PubMed  Google Scholar 

  25. Xu K, Shen Y, Zhang ZK, Cao M, Gu F, Wang LJ (2016) The influence of different modified graphene on property of DSSCs. Appl Surf Sci 362:477–482. https://doi.org/10.1016/j.apsusc.2015.11.265.

    Article  CAS  Google Scholar 

  26. Zhou J, Yang Y, Zhang CY (2013) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49:8605–8607. https://doi.org/10.1039/c3cc42266f

    Article  CAS  Google Scholar 

  27. Zhang H, Fan XF, Quan X, Chen S, Yu HT (2011) Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environ Sci Technol 45:5731–5736. https://doi.org/10.1021/es2002919

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava S, Kumar V, Ali MA, Solanki PR, Srivastava A, Sumana G, Saxena PS, Joshi AG, Malhotra BD (2013) Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5:3043–3051. https://doi.org/10.1039/c3nr32242d

    Article  CAS  PubMed  Google Scholar 

  29. Lin QY, Li L, Liang SJ, Liu MH, Bi JH, Wu L (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B Environ 163:135–142. https://doi.org/10.1016/j.apcatb.2014.07.053

    Article  CAS  Google Scholar 

  30. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986. https://doi.org/10.1021/nn1008897

    Article  CAS  PubMed  Google Scholar 

  31. Neogi A, Karna S, Shah R, Phillipose U, Perez J, Shimada R, Wang ZM (2014) Surface plasmon enhancement of broadband photoluminescence emission from graphene oxide. Nanoscale 6:11310–11315. https://doi.org/10.1039/c4nr03055a

    Article  CAS  PubMed  Google Scholar 

  32. Soto-Chinchilla JJ, Garcia-Campana AM, Gamiz-Gracia L (2007) Analytical methods for multiresidue determination of sulfonamides and trimethoprim in meat and ground water samples by CE-MS and CE-MS/MS. Electrophoresis 28:4164–4172. https://doi.org/10.1002/elps.200600848

    Article  CAS  PubMed  Google Scholar 

  33. Yan J, Huang YF, Zhang CH, Fang ZZ, Bai WH, Yan MM, Zhu C, Chen AL (2017) Aptamer based photometric assay for the antibiotic sulfadimethoxine based on the inhibition andreactivation of the peroxidase-like activity of gold nanoparticles. Microchim Acta 184:59–63. https://doi.org/10.1007/s00604-016-1994-1

    Article  CAS  Google Scholar 

  34. Tan B, Zhao HM, Du L, Gan XR, Quan X (2016) A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosens Bioelectron 83:267–273. https://doi.org/10.1016/j.bios.2016.04.065

    Article  CAS  PubMed  Google Scholar 

  35. Liu XY, Gao TF, Gao X, Ma T, Tang YW, Zhu LJ, Li JR (2017) An aptamer based sulfadimethoxine assay that uses magnetized upconversion nanoparticles. Microchim Acta 184:3557–3563. https://doi.org/10.1007/s00604-017-2378-x

    Article  CAS  Google Scholar 

  36. Yang ZH, Ding XF, Guo Q, Wang Y, Lu ZW, Ou HC, Lou ZF, Lou XH (2017) Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine. Sensors Actuators B Chem 253:1129–1136. https://doi.org/10.1016/j.snb.2017.07.119

    Article  CAS  Google Scholar 

  37. Okoth OK, Yan K, Liu Y, Zhang J (2016) Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens Bioelectron 86:636–642. https://doi.org/10.1016/j.bios.2016.07.037

    Article  CAS  PubMed  Google Scholar 

  38. Muriano A, Pinacho DG, Chabottaux V, Diserens JM, Granier B, Stead S, Baeza FS, Pividori MI, Marco MP (2013) A portable electrochemical magnetoimmunosensor for detection of sulfonamide antimicrobials in honey. Anal Bioanal Chem 405:7885–7895. https://doi.org/10.1007/s00216-013-7219-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21777012), the Program of Introducing Talents of Discipline to Universities (B13012) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_13R05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, X., Zhao, H., Wang, X. et al. Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim Acta 185, 345 (2018). https://doi.org/10.1007/s00604-018-2877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2877-4

Keywords

Navigation