Skip to main content
Log in

A nanohybrid composed of Prussian Blue and graphitic C3N4 nanosheets as the signal-generating tag in an enzyme-free electrochemical immunoassay for the neutrophil gelatinase-associated lipocalin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An enzyme-free electrochemical immunoassay is described for the neutrophil gelatinase-associated lipocalin (NGAL; a biomarker of kidney disease). Prussian Blue (PB) nanoparticles with redox activity were deposited on graphitic C3N4 nanosheets (g-C3N4) by in-situ reduction. A screen printed electrode (SPCE) was modified with antibody against NGAL, and the PB-g-C3N4 nanohybrid was used as the signal-generating tag for the secondary antibody against NGAL. Upon addition of target NGAL and of secondary antibody, a sandwich is formed on the SPCE. At an applied potential of typically 0.13 V (vs. Ag/AgCl), a well-defined voltammetric peak is observed that results from the presence of PB on the secondary antibody. Under optimal conditions, the peak current increases linearly in the 0.01 to 10 ng·mL−1 NGAL concentration range, and the detection limit is 2.8 pg·mL−1. An average precision of <12% was accomplished in the batch-to-batch mode. Other disease-related biomarkers do not interfere. The accuracy and inter-laboratory validation of this method were evaluated for target NGAL detection in spiked human serum by using a commercial ELISA. The results obtained by the two methods are in good accordance.

An enzyme-free electrochemical immunoassay was used for detection of neutrophil gelatinase-associated lipocalin by Prussian blut/graphitic-C3N4 nanohybrids as the signal-generation tags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pisano D, Joyce M (2018) Plasma neutrophil gelatinase-associated lipocalin: biomarker of the future or just another test? J Clin Anesthesia 45:37–38

    Article  Google Scholar 

  2. Hraba-Renevey S, Turler H, Kress M, Salomon C, Weil R (1989) SV40-induced expression of mouse gene 243 involves a post-transcriptional mechanism. Oncogene 4:601–608

    CAS  PubMed  Google Scholar 

  3. Mori K, Nakao K (2007) Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int 71:967–970

    Article  CAS  PubMed  Google Scholar 

  4. Deverajan P (2010) Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med 4(2):265–280

    Article  Google Scholar 

  5. Sellmer A, Bech B, Bjerre J, Schmidt M, Hjortdal V, Esberg G, Rttig S, Henriksen T (2017) Urinary neutrophil gelatinase-associated lipocalin in the evaluation of patent ductus arteriosus and AKI in very preterm neonates: a cohort study. BMC Pediatr 17:art. ID 7

  6. Devarajan P (2008) Neutrophil genlatinase-associated lipocalin (NGAL): a new maker of kidney disease. Scand J Clin Lab Invest Suppl 241:89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lei L, Zhu J, Xia G, Feng F, Zhang H, Han Y (2017) A rapid and user-friendly assay to detect the neutrophil gelatinase-associated lipocalin (NGAL) using up-converting nanoparticles. Talanta 162:339–344

    Article  CAS  PubMed  Google Scholar 

  8. Shukla K, Badgujar S, Bhanushali P, Sabharwal S (2017) Simplified purification approach of urinary neutrophil gelatinase-association lipocalin by tangential flow filtration and ion exchange chromatography. J Chromatogr B 1051:68–74

    Article  CAS  Google Scholar 

  9. Mu Y, Xie H, Wan Y (2015) Sensitive and specific neutrophil gelatinase-associated lipocalin detection by solid-phase proximity ligation assay. Anal Sci 31:475–479

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Mu Y, Yan J, Cui D, Ou W, Wan Y, Liu S (2015) Label-free photoelectrochemical immunosensor for neutrophil gelatinase-associated lipocalin based on the use of nanobodies. Anal Chem 87:2007–2015

    Article  CAS  PubMed  Google Scholar 

  11. Kannan P, Tiong H, Kim D (2012) Highly sensitive electrochemical detection of neutrophil gelatinase-associated lipocalin for acute kidney injury. Biosens Bioelectron 31:32–36

    Article  CAS  PubMed  Google Scholar 

  12. Qiu Z, Shu J, Tang D (2018) Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core-shell NaYF4:Yb,tm@TiO2 upconversion microrods. Anal Chem 90:1021–1028

    Article  CAS  PubMed  Google Scholar 

  13. Shu J, Tang D (2017) Current advances in quantum-dots-based photoelectrochemical immunoassay. Chem Asian J 12:2780–2789

    Article  CAS  PubMed  Google Scholar 

  14. Zhang K, Lv S, Lin Z, Li M, Tang D (2018) Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron 101:159–166

    Article  CAS  PubMed  Google Scholar 

  15. Gao Z, Lv S, Xu M, Tang D (2017) High-index: HK0 faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst 142:911–917

    Article  CAS  PubMed  Google Scholar 

  16. He L, Guo C, Song Y, Zhang S, Yang M, Peng D, Fang S, Zhang Z, Liu C (2017) Chitosan stabilized gold nanoparticle based electrochemical ractopamine immunoassay. Microchim Acta 184:2919–2924

    Article  CAS  Google Scholar 

  17. Shu J, Qiu Z, Lv S, Zhang K, Tang D (2018) Plasmonic enhancement coupling with defect-engineered TiO2-x: a mode for sensitive photoelectrochemical biosensing. Anal Chem 90:2425–2429

    Article  CAS  PubMed  Google Scholar 

  18. Qin Z, Xu W, Chen S, Chen J, Qiu J, Li C (2018) Electrochemical immunoassay for the carcinoembryonic antigen based on the use of a glassy carbon electrode modified with an octahedral Cu2O-gold nanocomposite and staphylococcal protein for signal amplification. Microchim Acta 185:266

    Article  CAS  Google Scholar 

  19. Yin S, Zhao L, Ma Z (2018) Label-free electrochemical immunosensor for ultrasensitive detection of neuron-specific enolase based on enzyme-free catalytic amplification. Anal Bioanal Chem 410:1279–1286

    Article  CAS  PubMed  Google Scholar 

  20. Felix F, Angnes L (2018) Electrochemical immunosensors-a powerful tool for analytical applications. Biosens Bioelectron 102:470–478

    Article  CAS  PubMed  Google Scholar 

  21. Chu Z, Liu Y, Jin W (2017) Recent progress in Prussian blue films: methods used to control regular nanostructures for electrochemical biosensing applications. Biosens Bioelectron 96:17–25

    Article  CAS  PubMed  Google Scholar 

  22. Wen S, Wang Y, Yuan Y, Liang R, Qiu J (2018) Electrochemical sensor for arsenite detection using graphene oxide assisted generation of Prussian blue nanoparticles as enhanced signal label. Anal Chim Acta 1002:82–89

    Article  CAS  PubMed  Google Scholar 

  23. Aguila D, Prado Y, Koumousi E, Mathoniere C, Clerac R (2016) Switchable Fe/co Prussian blue networks and molecular analogues. Chem Soc Rev 45:203–224

    Article  CAS  PubMed  Google Scholar 

  24. Moritomo Y, Takachi M, Kuihara Y, Matsuda T (2013) Synchrotron-radiation X-ray investigation of li+/Na+ intercalation into Prussian blue analogues. Adv mater Sci Engin 2013: art. ID 967285

  25. Mollarasouli F, Serafin V, Campuzano S, Yanez-Sedeno P, Pingarron J, Asadpour-Zeynali K (2018) Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Anal Chim Acta 1011:28–34

    Article  CAS  PubMed  Google Scholar 

  26. Molinero-Abad B, Izquierdo D, Perez L, Escudero I, Arcos-Martinez M (2018) Comparison of backing materials of screen printed electrochemical sensors for direct determination of the subnanomolar concentration of lead in seawater. Talanta 182:549–557

    Article  CAS  PubMed  Google Scholar 

  27. Lv S, Li Y, Zhang K, Lin Z, Tang D (2017) Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters. ACS Appl Mater Interface 9:38336–38343

    Article  CAS  Google Scholar 

  28. Ouyang H, Tu X, Fu Z, Wang W, Fu S, Zhu C, Du D, Lin Y (2018) Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide utilizing g-C3N4/BiFeO3 nanocomposites. Biosens Bioelectron 106:43–49

    Article  CAS  PubMed  Google Scholar 

  29. Wasilewaka A, Zoch-Zwierz W, Taranta-Janusz K, Michaluk-Skutnik J (2010) Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity? Pediatr Nephrol 25:889–897

    Article  Google Scholar 

  30. Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao S (2012) Nanostrucrued metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 8:3550–3566

    Article  CAS  PubMed  Google Scholar 

  31. Gong Y, Li M, Wang Y (2015) Carbon nitride in energy conversion and storage: recent advances and future prospects. ChemSusChem 8:931–946

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Support by the Health Science Research Personnel Training Program of Fujian Province (Grant no.: 2017-CXB-22) and the Scientific Research Innovation Team Construction Program of Fujian Normal University (Grant no.: IRTL1702) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Lin or Jiyi Huang.

Ethics declarations

The authors declare that they have no competing interest.

Electronic supplementary material

ESM 1

(DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhong, H., Lin, Y. et al. A nanohybrid composed of Prussian Blue and graphitic C3N4 nanosheets as the signal-generating tag in an enzyme-free electrochemical immunoassay for the neutrophil gelatinase-associated lipocalin. Microchim Acta 185, 327 (2018). https://doi.org/10.1007/s00604-018-2865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2865-8

Keywords

Navigation