Skip to main content
Log in

Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a dual (colorimetric and fluorometric) detection scheme for microRNA. The method is based on the use of fluorescent DNA-modified silver nanoclusters (DNA-AgNCs) and gold nanoparticles (AuNPs). The DNA-AgNCs were linked to AuNPs via the interaction of ssDNA-AgNC probes with AuNPs. This led to quenching of the fluorescence of the DNA-AgNCs (best measured at excitation/emission peaks of 370/450 nm) and also prevents salt-induced aggregation of the AuNPs. Upon addition of microRNA, the DNA on the AgNCs hybridizes with microRNA. This led to the formation of a DNA-AgNC/miRNA hetero-duplex and increase of the distance to the AuNPs. Quenching was suppressed and fluorescence was restored. The presence of microRNA also affected salt-induced particle aggregation as reflected by a color change from red to purple that is visible with bare eyes. The visual detection limit for microRNA is 0.6 nM, and the fluorometric detection limit is 0.4 pM.

Schematic of the colorimetric and fluorometric assay for microRNA (miRNA). It is based on the use of fluorescent DNA-modified silver nanoclusters (AgNCs) and gold nanoparticles (AuNPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113:6207–6233

    Article  CAS  PubMed  Google Scholar 

  2. Gurses HE, Hatipoğlu OF, Gunduz M, Gunduz E. (2015) MicroRNAs as therapeutic targets in human breast Cancer. Intechopen, Chapter 5

  3. Van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix L, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu J, Zheng Z, Wang J, Sun J, Wang P, Cheng X, Fu L, Zhang L, Wang Z, Li Z (2014) Different microRNA expression profiles between human breast cancer tumors and serum. Front Genet 5:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao SY, Wu Q, Gao F, Zhang CB, Yang XW (2012) Increased expression of MicroRNA-155 in the serum of women with early-stage breast Cancer. Lab Med 43(5)

  6. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED (2010) MicroRNA-155 functions as an OncomicroRNA in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70:3119–3127

    Article  CAS  PubMed  Google Scholar 

  7. Tian T, Wang J, Zhou X (2015) A review: microRNA detection methods. Org Biomol Chem 13:2226–2238

    Article  CAS  PubMed  Google Scholar 

  8. Sang Y, Xu Y, Xu L, Cheng W, Li X, Wu J, Ding S (2017) Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Microchim Acta 184:2465–2247

    Article  CAS  Google Scholar 

  9. Xiong H, Zheng X (2017) Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Microchim Acta 184:1781–1789

    Article  CAS  Google Scholar 

  10. Zeng K, Li H, Peng Y (2017) Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta 184:2637–2644

    Article  CAS  Google Scholar 

  11. Catuogno S, Esposito CL, Quintavalle C, Cerchia L, Condorelli G, de Franciscis V (2011) Recent advance in biosensors for microRNAs detection in Cancer. Cancers 3:1877–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obliosca JM, Liu C, Yeh HC (2013) Fluorescent silver nano-clusters as DNA probes. Nanoscale 5:8443–8461

    Article  CAS  PubMed  Google Scholar 

  13. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  PubMed  Google Scholar 

  14. Nirmal G, Zheng K, Xie J (2014) Bio-NCs – the marriage of ultrasmall metal nano-clusters with biomolecules. Nanoscale 6:13328–13347

    Article  CAS  Google Scholar 

  15. Borghei YS, Hosseini M, Khoobi M, Ganjali MR (2016) Novel Fluorometric assay for detection of cysteine as a reducing agent and template in formation of copper nano-clusters. J Fluoresc 27:529–536

    Article  CAS  PubMed  Google Scholar 

  16. Borghei YS, Hosseini M, Ganjali MR, Hosseinkhani S (2018) A novel BRCA1 gene deletion detection in human breast carcinoma MCF-7 cells through FRET between quantum dots and silver nanoclusters. J Pharm Biomed Anal 152:81–88 

  17. Borghei YS, Hosseini M, Ganjali MR (2017) Detection of large deletion in human BRCA1 gene in human breast carcinoma MCF-7 cells by using DNA-silver Nanoclusters. Methods Appl Fluoresc 6:015001

    Article  PubMed  Google Scholar 

  18. Borghei YS, Hosseini M, Ganjali MR (2017) Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots. Microchim Acta 184:4713–4721

    Article  CAS  Google Scholar 

  19. Borghei YS, Hosseini M, Ganjali MR, Hosseinkhani S (2017) Label-free fluorescent detection of microRNA-155 based on synthesis of hairpin DNA-templated copper nanoclusters by etching (top-down approach). Sensors Actuators B Chem 248:133–139

    Article  CAS  Google Scholar 

  20. Hosseini M, Ahmadi E, Borghei YS, Ganjali MR (2017) New fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA–gold nanocluster. Methods Appl Fluoresc 5:015005 16

    Article  CAS  PubMed  Google Scholar 

  21. Hosseini M, Mohammadi S, Borghei YS, Ganjali MR (2017) Detection of p53 gene mutation (Single-Base mismatch) using a fluorescent silver Nano-clusters. J Fluoresc 27:1443–1448. https://doi.org/10.1007/s10895-017-2083-5.17

    Article  CAS  PubMed  Google Scholar 

  22. Lin CAJ, Lee CH, Hsieh JT, Wang HH, Li JK, Shen JL, Chan WH, Yeh HI, Chang WH (2009) Synthesis of fluorescent metallic Nano-clusters toward biomedical application: recent progress and present challenges. J Med Biolog Eng 29:276–283.18

    CAS  Google Scholar 

  23. Jeong J, Yoon B, Kwon YW, Choi D, Seob Jeong K (2017) Singly and doubly occupied higher quantum state in Nanocrystals. Nano Lett 17:1187–1193

    Article  CAS  PubMed  Google Scholar 

  24. Zhao D, Chen C, Lu L, Yang F, Yang X (2015) A dual-mode colorimetric and fluorometric “light on” sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nano-particles. Analyst 140:8157–8164

    Article  CAS  PubMed  Google Scholar 

  25. Zhao W, Chiuman W (2007) Simple and rapid colorimetric biosensors based on DNA Aptamer and noncrosslinking gold nanoparticle aggregation. Chembiochem 8:727–731

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nano-particles. PNAS 101:14036–14039

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Yang Y, Zhao X, Liu Z, Li Y (2013) Responsive disassembly of the gold nanoparticle aggregates triggered by the competitive adsorption for lighting up the colorimetric sensing. Anal Methods 5:3242–3247

    Article  CAS  Google Scholar 

  28. Li H, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    Article  CAS  PubMed  Google Scholar 

  29. Girigoswami A, Li T, Jun C, Young MH, Gyu Park H (2009) Gold nanoparticle-based label-free detection of BRCA1 mutations utilizing DNA ligation on DNA microarray. Nanosci Nanotechnol 9:1019–1024

    Article  CAS  Google Scholar 

  30. Lee H, Kang T, Yoon KA, Lee SY, Joo SW, Lee K (2010) Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens Bioelectron 25:1669–1674

    Article  CAS  PubMed  Google Scholar 

  31. Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2016) Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nano-particles induced by DNA hybridization. Anal Chim Acta 904:92–97

    Article  CAS  PubMed  Google Scholar 

  32. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2015) Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nano-clusters for Cancer early diagnosis. Biosens Bioelectron 73:108–113

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh D, Chattopadhyay N (2013) Gold Nano-particles: acceptors for efficient energy transfer from the Photoexcited Fluorophores. Optics Photonics J 3:18–26

    Article  CAS  Google Scholar 

  34. He H, Dai J, Duan Z, Zheng B, Meng Y, Guo Y, Xiao D (2016) Unusual sequence length-dependent gold nano-particles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection. Sci Rep 6:30878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayilo S, Kloster MA, Wunderlich M, Lutich A, Klar TA, Nichtl A, Rzinger KK, Stefani FD, Feldmann J (2009) Long-range fluorescence quenching by gold Nano-particles in a sandwich immunoassay for cardiac troponin T. Nano Lett 9:4558–4563

    Article  CAS  PubMed  Google Scholar 

  36. Borghei YS, Hosseini M, Ganjali MR (2017) Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta 184:2671–2677

    Article  CAS  Google Scholar 

  37. Li RD, Wang Q, Yin BC, Ye BC (2016) Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy. Biosens Bioelectron 77:995–1000

    Article  CAS  PubMed  Google Scholar 

  38. Shah P, Choi SW, Kim HJ, Cho SK, Bhang YJ, Ryu MY, Thulstrup PW, Bjerrum MJ, Yang SW (2016) Locking-to-unlocking system is an efficient strategy to design DNA/silver nano-clusters (AgNCs) probe for human microRNAs. Nucleic Acids Res 44:e57

    Article  PubMed  Google Scholar 

  39. Wang Z, Si L, Bao J, Dai Z (2015) A reusable microRNA sensor based on the electrocatalytic property of hetero-duplex templated copper nano-clusters. Chem Commun 51:6305–6307

    Article  CAS  Google Scholar 

  40. Yang C, Shi K, Dou B, Xiang Y, Chai Y, Yuan R (2015) In situ DNA-Templated synthesis of silver Nano-clusters for ultrasensitive and label-free electrochemical detection of MicroRNA. ACS Appl Mater Interfaces 7:1188–1193

    Article  CAS  PubMed  Google Scholar 

  41. Shah P, Choi SW, Kim HJ, Cho SK, Thulstrup PW, Bjerrum MJ, Bhang YJ, Ahn JC, Yang SW (2015) DNA/RNA chimera templates improve the emission intensity and target the accessibility of silver nanocluster-based sensors for human microRNA detection. Analyst 140:3422–3430

    Article  CAS  PubMed  Google Scholar 

  42. Liu L, Jiang S, Wang L, Zhang Z, Xie G (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly(amidoamine) dendrimer composite with gold and silver nano-clusters. Microchim Acta 182:77–84

    Article  CAS  Google Scholar 

  43. Cheng Y, Lei J, Chen Y, Ju H (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nano-clusters. Biosens Bioelectron 51:431–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the research Council of University of Tehran (Grant 28645/01/02) and NBIC Research Center for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghei, YS., Hosseini, M., Ganjali, M.R. et al. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Microchim Acta 185, 286 (2018). https://doi.org/10.1007/s00604-018-2825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2825-3

Keywords

Navigation