Skip to main content
Log in

Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fluorescent hydroxyapatite nanoparticles (HAP-NPs) were prepared by reacting calcium ion with phosphate in the presence of Eu(III) ion. The HAP-NPs display large Stokes’ shift and two strong fluorescence emissions with peaks at 590 nm and 615 nm when excited at 250 nm. The HAP-NPs also have good photostability and water solubility. The HAP-NPs combined with Cu(II) were applied to fluorometric determination of cysteine and homocysteine in biological samples and in living cells. In this detection scheme, the fluorescence of HAP-NPs is initially quenched by Cu(II). The addition of biothiols results in the formation of Cu(II)-thiol complexes and leads to fluorescence recovery. The assay allows cysteine to be detected with a 110 nM detection limit, and homocysteine with a 160 nM detection limit. The assay was successfully applied to the analysis of cysteine in spiked human serum samples and to imaging of cysteine in HeLa cells, and this demonstrates its potential for clinical testing and in biomedical research.

Fluorescent hydroxyapatite nanoparticles were synthesized and combined with Cu2+ for fluorescence sensing of biothiols (cysteine and homocysteine) in complex biological samples and in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5:

Similar content being viewed by others

References

  1. Guo L, Tang T, Hu L, Yang M, Chen X (2017) Fluorescence assay of Fe (III) in human serum samples based on pH dependent silver nanoclusters. Sensors Actuators B Chem 241:773–778

    Article  CAS  Google Scholar 

  2. Chen G, Qju H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, Nanochemistry, and applications in Theranostics. Chem Rev 114(10):5161–5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen X, Peng D, Ju Q, Wang F (2015) Photon upconversion in core-shell nanoparticles. Chem Soc Rev 44(6):1318–1330

    Article  PubMed  Google Scholar 

  4. Kang W, Ding Y, Zhou H, Liao Q, Yang X, Yang Y, Jiang J, Yang M (2015) Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots. Microchim Acta 182(5–6):1161–1167

    Article  CAS  Google Scholar 

  5. Guo L, Chen D, Yang M (2017) DNA-templated silver nanoclusters for fluorometric determination of the activity and inhibition of alkaline phosphatase. Microchim Acta 184(7):2165–2170

    Article  CAS  Google Scholar 

  6. Pei H, Zheng Y, Kong R, Xia L, Qu F (2016) Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission. Biosens Bioelectron 85:76–82

    Article  CAS  PubMed  Google Scholar 

  7. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F (2015) Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 74:909–914

    Article  CAS  PubMed  Google Scholar 

  8. Haider A, Haider S, Han SS, Kang I-K (2017) Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv 7(13):7442–7458

    Article  CAS  Google Scholar 

  9. Lu HB, Campbell CT, Graham DJ, Ratner BD (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 72(13):2886–2894

    Article  CAS  PubMed  Google Scholar 

  10. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182(9–10):1567–1589

    Article  CAS  Google Scholar 

  11. Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9(8):7591–7621

    Article  CAS  PubMed  Google Scholar 

  12. Hou Y, Morrison CJ, Cramer SM (2011) Classification of protein binding in hydroxyapatite chromatography: synergistic interactions on the molecular scale. Anal Chem 83(10):3709–3716

    Article  CAS  PubMed  Google Scholar 

  13. Huang Y, Tang C, Liu J, Cheng J, Si Z, Li T, Yang M (2017) Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Microchim Acta 184(3):855–861

    Article  CAS  Google Scholar 

  14. Sun J, Tian D, Guo Q, Zhang L, Jiang W, Yang M (2016) A label-free electrochemical immunosensor for the detection of cancer biomarker alpha-fetoprotein (AFP) based on hydroxyapatite induced redox current. Anal Methods 8(40):7319–7323

    Article  CAS  Google Scholar 

  15. Jiang W, Tian D, Zhang L, Guo Q, Cui Y, Yang M (2017) Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles. Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB. Microchim Acta 184:4375–4381

    Article  CAS  Google Scholar 

  16. Li J, Kuang D, Feng Y, Zhang F, Liu M (2012) Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes. Microchim Acta 176(1–2):73–80

    Article  CAS  Google Scholar 

  17. Qu F, Yang M, Rasooly A (2016) Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer's related protease beta-secretase. Anal Chem 88(21):10559–10565

    Article  CAS  PubMed  Google Scholar 

  18. Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R (2010) A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds. Anal Chim Acta 665(2):146–151

    Article  CAS  PubMed  Google Scholar 

  19. Liu HY, Chen FJ, Xi PX, Chen B, Huang L, Cheng J, Shao CW, Wang J, Bai DC, Zeng ZZ (2011) Biocompatible fluorescent hydroxyapatite: synthesis and live cell imaging applications. J Phys Chem C 115(38):18538–18544

    Article  CAS  Google Scholar 

  20. Kim EJ, Choi SW, Hong SH (2007) Synthesis and photoluminescence properties of Eu3+−doped calcium phosphates. J Am Ceram Soc 90(9):2795–2798

    Article  CAS  Google Scholar 

  21. Al-Kattan A, Dufour P, Dexpert-Ghys J, Drouet C (2010) Preparation and physicochemical characteristics of luminescent apatite-based colloids. J Phys Chem C 114(7):2918–2924

    Article  CAS  Google Scholar 

  22. Chen F, Huang P, Zhu YJ, Wu J, Zhang CL, Cui DX (2011) The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials 32(34):9031–9039

    Article  CAS  PubMed  Google Scholar 

  23. Zhang CM, Li CX, Huang SS, Hou ZY, Cheng ZY, Yang PP, Peng C, Lin J (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31(12):3374–3383

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Cheng Z, Yang P, Xu Z, Peng C, Li G, Lin J (2009) Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties. Langmuir 25(23):13591–13598

    Article  CAS  PubMed  Google Scholar 

  25. Feng L, Wu L, Xing F, Hu L, Ren J, Qu X (2017) Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols. Biosens Bioelectron 98:378–385

    Article  CAS  PubMed  Google Scholar 

  26. Li S-S, Guan Q-Y, Zheng M, Wang Y-Q, Ye D, Kang B, Xu J-J, Chen H-Y (2017) Simultaneous quantification of multiple endogenous biothiols in single living cells by plasmonic Raman probes. Chem Sci 8(11):7582–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang F, Feng C, Lu L, Xu Z, Zhang W (2017) A ratiometric fluorescent probe for rapid and sensitive detection of biothiols in fetal bovine serum. Talanta 169:149–155

    Article  CAS  PubMed  Google Scholar 

  28. Wang K, Leng T, Liu Y, Wang C, Shi P, Shen Y, Zhu W-H (2017) A novel near-infrared fluorescent probe with a large stokes shift for the detection and imaging of biothiols. Sensors Actuators B Chem 248:338–345

    Article  CAS  Google Scholar 

  29. Wu Y, Liu X, Wu Q, Yi J, Zhang G (2017) Carbon Nanodots-based fluorescent turn-on sensor Array for biothiols. Anal Chem 89(13):7084–7089

    Article  CAS  PubMed  Google Scholar 

  30. Hu L, Hu S, Guo L, Tang T, Yang M (2016) Optical and electrochemical detection of biothiols based on aggregation of silver nanoparticles. Anal Methods 8(24):4903–4907

    Article  CAS  Google Scholar 

  31. Gu T, Zou W, Gong F, Xia J, Chen C, Chen X (2018) A specific nanoprobe for cysteine based on nitrogen-rich fluorescent quantum dots combined with Cu2+. Biosens Bioelectron 100:79–84

    Article  CAS  PubMed  Google Scholar 

  32. Yu Y, Xu H, Zhang W, Wang B, Jiang Y (2018) A novel benzothiazole-based fluorescent probe for cysteine detection and its application on test paper and in living cells. Talanta 176:151–155

    Article  CAS  PubMed  Google Scholar 

  33. Hou X, Li Z, Li B, Liu C, Xu Z (2018) An “off-on” fluorescein-based colormetric and fluorescent probe for the detection of glutathione and cysteine over homocysteine and its application for cell imaging. Sensors Actuators B Chem 260:295–302

    Article  CAS  Google Scholar 

  34. Tang Z, Lin Z, Li G, Hu Y (2017) Amino nitrogen quantum dots-based Nanoprobe for fluorescence detection and imaging of cysteine in biological samples. Anal Chem 89(7):4238–4245

    Article  CAS  PubMed  Google Scholar 

  35. He L, Yang X, Xu K, Lin W (2017) Improved aromatic substitution rearrangement-based Ratiometric fluorescent cysteine-specific probe and its application of real-time imaging under oxidative stress in living zebrafish. Anal Chem 89(17):9567–9573

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Luo H, Liu X, Foley JW, Song X (2016) Broadly applicable strategy for the fluorescence based detection and differentiation of glutathione and cysteine/homocysteine: demonstration in vitro and in vivo. Anal Chem 88(7):3638–3646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the support of this work by the National Natural Science Foundation of China (Grant No.21575165) and the support by Central South University (Grant No.2017gczd018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang or Chunsheng Shao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shen, C., Li, X. et al. Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells. Microchim Acta 185, 271 (2018). https://doi.org/10.1007/s00604-018-2801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2801-y

Keywords

Navigation