Skip to main content
Log in

Synthesis of hybrid magneto-plasmonic nanoparticles with potential use in photoacoustic detection of circulating tumor cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes a novel synthetic route to obtain hybrid nanostructures that combine the plasmonic properties of gold nanorods with the magnetic properties of iron oxide nanoparticles in a robust silica nanostructure. The silica matrix enhances the physico-chemical stability of the nanostructure and preserves its magneto-plasmonic properties by avoiding the interface between gold and iron oxide. In addition, the magneto-plasmonic features of the nanohybrids can be tuned due to the independent synthesis of each component. The magnetic and plasmonic properties of these nanostructures can potentially enhance the photoacoustic detection of circulating tumor cells.

Schematic presentation of a hybrid magneto-plasmonic nanoparticle with an Au@Fe3O4@SiO2 core-satellite-shell arrangement. The magnetic and plasmonic responses of this kind of nanostructure enable magnetic trapping and photoacoustic detection of circulating tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e

    Article  CAS  Google Scholar 

  2. Yang X, Yang M, Pang B et al (2015) Gold Nanomaterials at work in biomedicine. Chem Rev 115:10410–10488. https://doi.org/10.1021/acs.chemrev.5b00193

    Article  CAS  Google Scholar 

  3. Shin T-H, Choi Y, Kim S et al (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44:4501–4516. https://doi.org/10.1039/C4CS00345D

    Article  CAS  Google Scholar 

  4. Espinosa A, Di Corato R, Kolosnjaj-Tabi J et al (2014) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and Photothermal bimodal treatment. ACS Nano 6:11462–11472. https://doi.org/10.1039/C4NR03865G

    Google Scholar 

  5. Lim EK, Kim T, Paik S et al (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394. https://doi.org/10.1021/cr300213b

    Article  CAS  Google Scholar 

  6. Galanzha EI, Shashkov EV, Kelly T et al (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 4:855–860. https://doi.org/10.1038/nnano.2009.333

    Article  CAS  Google Scholar 

  7. Hu X, Wei CW, Xia J et al (2013) Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto-optical coupled nanoparticles. Small 9:2046–2052. https://doi.org/10.1002/smll.201202085

    Article  CAS  Google Scholar 

  8. Espinosa A, Di Corato R, Kolosnjaj-Tabi J et al (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and Photothermal bimodal treatment. ACS Nano 10:2436–2446. https://doi.org/10.1021/acsnano.5b07249

    Article  CAS  Google Scholar 

  9. Guerrero E, Muñoz-Márquez MA, García MA et al (2008) Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles. Nanotechnology 19:175701. https://doi.org/10.1088/0957-4484/19/17/175701

    Article  CAS  Google Scholar 

  10. Zhou H, Zou F, Koh K, Lee J (2014) Multifunctional magnetoplasmonic nanomaterials and their biomedical applications. J Biomed Nanotechnol 10:2921–2949. https://doi.org/10.1166/jbn.2014.1938

    Article  CAS  Google Scholar 

  11. Cortie MB, Mcdonagh AM (2011) Synthesis and optical properties of hybrid and alloy Plasmonic nanoparticles. Chem Rev 111:3713–3735

    Article  CAS  Google Scholar 

  12. Bao Z, Sun Z, Li Z et al (2011) Plasmonic gold-superparamagnetic hematite heterostructures. Langmuir 27:5071–5075. https://doi.org/10.1021/la200147d

    Article  CAS  Google Scholar 

  13. Wang C, Irudayaraj J (2010) Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:283–289. https://doi.org/10.1002/smll.200901596

    Article  CAS  Google Scholar 

  14. Chuang Y, Lin C, Lo S et al (2014) Biomaterials dual functional AuNRs @ MnMEIOs nanoclusters for magnetic resonance imaging and photothermal therapy. Biomaterials 35:4678–4687. https://doi.org/10.1016/j.biomaterials.2014.02.026

    Article  CAS  Google Scholar 

  15. Huang L, Ao L, Hu D et al (2016) Magneto-Plasmonic Nanocapsules for multimodal-imaging and magnetically guided combination cancer therapy. Chem Mater 28:5896–5904. https://doi.org/10.1021/acs.chemmater.6b02413

    Article  CAS  Google Scholar 

  16. Fajaroh F, Setyawan H, Nur A, Lenggoro IW (2013) Thermal stability of silica-coated magnetite nanoparticles prepared by an electrochemical method. Adv Powder Technol 24:507–511. https://doi.org/10.1016/j.apt.2012.09.008

    Article  CAS  Google Scholar 

  17. Zhang XF, Clime L, Ly HQ et al (2010) Multifunctional Fe 3 O 4 −au/porous silica@fluorescein Core/Shell nanoparticles with enhanced fluorescence quantum yield. J Phys Chem C 114:18313–18317. https://doi.org/10.1021/jp1051112

    Article  CAS  Google Scholar 

  18. Chen Y-S, Frey W, Kim S et al (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18:8867. https://doi.org/10.1364/OE.18.008867

    Article  CAS  Google Scholar 

  19. Campero A, Cardoso J, Pacheco S (1997) Ethylene glycol-citric acid-silica hybrid organic-inorganic materials obtained by the sol-gel method. J Sol-Gel Sci Techn 8:535–539

    CAS  Google Scholar 

  20. Leite ER, Souza FL, Bueno PR et al (2005) Hybrid organic−inorganic polymer: a new approach for the development of decoupled polymer electrolytes. Chem Mater 17:4561–4563. https://doi.org/10.1021/cm051003j

    Article  CAS  Google Scholar 

  21. Jaque D, Martínez Maestro L, del Rosal B et al (2014) Nanoparticles for photothermal therapies. Nano 6:9494–9530. https://doi.org/10.1039/c4nr00708e

    CAS  Google Scholar 

  22. Cabrera L, Gutierrez S, Menendez N et al (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

    Article  CAS  Google Scholar 

  23. Ovejero JG, Mayoral A, Cañete M et al (2018) Electrochemical synthesis and magnetic properties of MFe2O4 (M = Fe, Mn, Co, Ni) nanoparticles for potential biomedical applications. J Nanosci Nanotechnol 18:1–8. https://doi.org/10.1166/jnn.2018.15313

  24. Nikoobakht B, El-sayed MA (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  25. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  26. Huang P, Lin J, Li W et al (2013) Biodegradable gold Nanovesicles with an Ultrastrong Plasmonic coupling effect for Photoacoustic imaging and Photothermal therapy. Angew Chemie 125:14208–14214. https://doi.org/10.1002/ange.201308986

    Article  Google Scholar 

  27. Tang J, Myers M, Bosnick KA, Brus LE (2003) Magnetite Fe 3 O 4 Nanocrystals: spectroscopic observation of aqueous oxidation kinetics . J Phys Chem B 107:7501–7506. https://doi.org/10.1021/jp027048e

    Article  CAS  Google Scholar 

  28. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D 44:283001. https://doi.org/10.1088/0022-3727/45/38/389501

    Article  Google Scholar 

  29. Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528. https://doi.org/10.1063/1.1599959

    Article  CAS  Google Scholar 

  30. Tian Y, Chen L, Zhang J et al (2012) Bifunctional au-nanorod @ Fe 3 O 4 nanocomposites: synthesis, characterization, and their use as bioprobes. J Nanopart Res 14:998. https://doi.org/10.1007/s11051-012-0998-y

    Article  Google Scholar 

  31. Faraudo J, Andreu JS, Calero C, Camacho J (2016) Predicting the self-assembly of Superparamagnetic colloids under magnetic fields. Adv Funct Mater 26:3837–3858. https://doi.org/10.1002/adfm.201504839

    Article  CAS  Google Scholar 

  32. Ovejero JG, Cabrera D, Carrey J et al (2016) Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles. Phys Chem Chem Phys 18:10954–10963. https://doi.org/10.1039/C6CP00468G

    Article  CAS  Google Scholar 

  33. Danks AE, Hall SR, Schnepp Z (2016) The evolution of “sol–gel” chemistry as a technique for materials synthesis. Mater Horizons 3:91–112. https://doi.org/10.1039/C5MH00260E

    Article  CAS  Google Scholar 

  34. Pechini MP, Adams N (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. United states Pat. Off. 01–07

  35. Lee H, Hong M, Bae S et al (2003) A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes. J Mater Chem 13:2626. https://doi.org/10.1039/b303980c

    Article  CAS  Google Scholar 

  36. Leite ER, Carreño NLV, Longo E et al (2002) Development of metal-SiO2 nanocomposites in a single-step process by the polymerizable complex method. Chem Mater 14:3722–3729. https://doi.org/10.1021/cm0203767

    Article  CAS  Google Scholar 

  37. Redolfi Riva E, Pastoriza-Santos I, Lak A et al (2017) Plasmonic/magnetic nanocomposites: gold nanorods-functionalized silica coated magnetic nanoparticles. J Colloid Interface Sci 502:201–209. https://doi.org/10.1016/j.jcis.2017.04.089

    Article  CAS  Google Scholar 

  38. Wang D-W, Zhu X-M, Lee S-F et al (2013) Folate-conjugated Fe3O4@SiO2@gold nanorods@mesoporous SiO2 hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy. J Mater Chem B 1:2934. https://doi.org/10.1039/c3tb20090f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation: MAT2015-67557-C2-2-P and MAT2015-67557-C1-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus G. Ovejero.

Ethics declarations

The authors declare that they have no competing interests. This work has been supported by the Spanish Ministry of Science and Innovation: MAT2015-67557-C2-2-P and MAT2015-67557-C1-2-P; and by projects NIH RO1-EB016034, R01-CA170734, RO1-HL121226, RO1-HL125339, the Life Sciences Discovery Fund 3292512, NSF CBET-1236309, and the Department of Bioengineering at the University of Washington.

Electronic supplementary material

ESM 1

(DOCX 8538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovejero, J.G., Yoon, S.J., Li, J. et al. Synthesis of hybrid magneto-plasmonic nanoparticles with potential use in photoacoustic detection of circulating tumor cells. Microchim Acta 185, 130 (2018). https://doi.org/10.1007/s00604-017-2637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2637-x

Keywords

Navigation