Skip to main content
Log in

A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This paper reports on an electrochemical sensing system for L-cysteine. It is based on the use of hollow cubic Cu2O particles that were prepared in two steps. First, the Cu2O/ polystyrene (PS) composites were prepared by a surface ion exchange strategy for in-situ reductive deposition on the surface of carboxy-capped PS particles. Thereafter, the PS particles were removed from the Cu2O/PS composites by treatment with tetrahydrofuran (THF). The resulting hollow cubic Cu2O particles were placed in a Nafion matrix on a glassy carbon electrode (GCE) which exhibits high surface area, good site accessibility and excellent electrocatalytic activity for L-cysteine. The cyclic voltammetric response of the modified GCE to L-cysteine is about 2.8-fold stronger than when using a GCE modified with pure Cu2O. The detection limit for L-cysteine is lower by about 1 order of magnitude, and the working voltage is rather low (−0.08 V vs. Ag/AgCl). An excellent electrochemical selectivity for L-cysteine over other amino acids was also achieved. The method was successfully applied to the determination of L-cysteine in pharmaceutical samples.

An electrochemical sensing system for the detection of L-cysteine in amino acid injections has been established by using the hollow cubic Cu2O particles as recognition element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad M, Pan C, Zhu J (2010) Electrochemical determination of L-cysteine by an elbow shaped, Sb-doped ZnO nano wire-modified electrode. J Mater Chem 20:7169–7174

    Article  CAS  Google Scholar 

  2. Chen S, Gao H, Shen W, Lu C, Yuan Q (2014) Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sensors Actuators B Chem 190:673–678

    Article  CAS  Google Scholar 

  3. Pan N, Wang LY, LL W, Peng CF, Xie ZJ (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@Pt core-shell nanohybrids. Microchim Acta 184:65–72

    Article  CAS  Google Scholar 

  4. Xu X, Qiao J, Li N, Qi L, Zhang S (2015) Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs. Anal Chim Acta 879:97–103

    Article  CAS  Google Scholar 

  5. Liu W, Luo J, Guo YM, Kou J, Li BX, Zhang ZJ (2014) Nanoparticle coated paper-based chemiluminescence device for the determination of L-cysteine. Talanta 120:336–341

    Article  CAS  Google Scholar 

  6. Kuśmierek K, Głowacki R, Bald E (2006) Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high performance liquid chromatography. Anal Bioanal Chem 385:855–860

    Article  Google Scholar 

  7. Jin W, Chen H (2000) A new method of determination of diffusion coefficients using capillary zone electrophoresis (peak-height method). Chromatographia 52:17–21

    Article  Google Scholar 

  8. Safavi A, Ahmadi R, Mahyari FA (2014) Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode. Amino Acids 46:1079–1085

    Article  CAS  Google Scholar 

  9. Liu Z, Zhang H, Hou S, Ma H (2012) Highly sensitive and selective electrochemical detection of L-cysteine using nanoporous gold. Microchim Acta 177:427–433

    Article  CAS  Google Scholar 

  10. Zhang L, Yuan R, Chai Y, Li X (2007) Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and L-cysteine film on an Au electrode. Anal Chim Acta 596:99–105

    Article  CAS  Google Scholar 

  11. Kalimuthu P, John SA (2009) Nanostructured electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole on glassy carbon electrode for the selective determination of L-cysteine. Electrochem Commun 11:367–370

    Article  CAS  Google Scholar 

  12. Chen ZF, Zheng HZ, Lu C, YB Z (2007) Oxidation of L-cysteine at a fluor surfactant-modified gold electrode: lower overpotential and higher selectivity. Langmuir 23:10816–10822

    Article  CAS  Google Scholar 

  13. Yang SL, Li G, Wang YY, Wang GF, LB Q (2016) Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim Acta 183:1351–1357

    Article  CAS  Google Scholar 

  14. Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484

    Article  CAS  Google Scholar 

  15. Zhou M, Ding J, Guo LP (2007) Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal Chem 79:5328–5335

    Article  CAS  Google Scholar 

  16. Zhang L, Ning L, Zhang ZH, Li SH, Yan H, Pang H, Ma H (2015) Fabrication and electrochemical determination of L-cysteine of the acomposite film based on V-substituted polyoxometalates and Au@2Ag core–shell nanoparticles. Sensors Actuators B Chem 221:28–36

    Article  CAS  Google Scholar 

  17. Amiri M, Salavati-Niasari M, Akbari A (2017) Magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol-gel method for electrocatalytic oxidation and determination of L-cysteine. Microchim Acta 184:825–833

    Article  CAS  Google Scholar 

  18. Razmi H, Heidari H (2009) Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine. Anal Biochem 388:15–19

    Article  CAS  Google Scholar 

  19. Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  CAS  Google Scholar 

  20. Devasenathipathy R, Karuppiah C, Chen SM, Mani V, Vasantha VS, Ramaraj S (2015) Highly selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin. Microchim Acta 182(3–4):727–735

    Article  CAS  Google Scholar 

  21. Wang YQ, Wang W, Li GF, Liu Q, Wei T, Li BS, Jiang CY, Sun YM (2016) Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Microchim Acta 183(12):3221–3228

    Article  CAS  Google Scholar 

  22. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  CAS  Google Scholar 

  23. Zhang L, Li H, Ni Y, Li J, Liao K, Zhao G (2009) Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem Commun 11:812–815

    Article  CAS  Google Scholar 

  24. Shishiyanu ST, Shishiyanu TS, Lupan OI (2006) Novel NO2 gas sensor based on cuprous oxide thin films. Sensors Actuators B Chem 113:468–476

    Article  CAS  Google Scholar 

  25. Orel ZC, Anzlovar A, Drazic G, Zigon M (2007) Cuprous oxide nanowires prepared by an additive-free polyol process. Cryst Growth Des 7:453–458

    Article  CAS  Google Scholar 

  26. Gou LF, Murphy CJ (2003) Solution-phase synthesis of Cu2O Nanocubes. Nano Lett 3:231–234

    Article  CAS  Google Scholar 

  27. Velmurugan M, Karikalan N, Chen SM, Karuppiah C (2016) Core-shell like Cu2O nanocubes enfolded with Co(OH)2 on reduced graphene oxide for the amperometric detection of caffeine. Microchim Acta 183:2713–2721

    Article  CAS  Google Scholar 

  28. Zhang XJ, Wang GF, AX G, HQ W, Fang B (2008) Preparation of porous Cu2O octahedron and its application as L-tyrosine sensors. Solid State Commun 148:525–528

    Article  CAS  Google Scholar 

  29. Zhang F, Li Y, Gu Y, Wang Z, Wang C (2011) One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173:103–109

    Article  CAS  Google Scholar 

  30. Jiang BB, Wei XW, FH W, KL W, Chen L, Yuan GZ, Dong C, Ye Y (2014) A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix. Microchim Acta 181:1463–1470

    Article  CAS  Google Scholar 

  31. Xie CG, Li HF, Li SQ, Wu J, Zhang ZP (2010) Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal Chem 82:241–249

    Article  CAS  Google Scholar 

  32. Zhang HG, Zhu QS, Zhang Y, Wang Y, Zhao L, Yu B (2007) One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv Funct Mater 17:2766–2771

    Article  CAS  Google Scholar 

  33. Sui Y, Zhang Y, Fu W, Yang H, Zhao Q, Sun P, Ma D, Yuan M, Li Y, Zou G (2009) Low-temperature template-free synthesis of Cu2O hollow spheres. J Cryst Growth 311:2285–2290

    Article  CAS  Google Scholar 

  34. LN W, Tan YL, Wang L, Sun SN, ZY Q, Zhang JM, Fan YJ (2015) Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Microchim Acta 182:1361–1369

    Article  Google Scholar 

  35. Guan GJ, Zhang ZP, Wang ZY, Liu BH, Gao DM, Xie CG (2007) Single-hole hollow polymer microspheres toward specific high-capacity uptake of target species. Adv Mater 19:2370–2374

    Article  CAS  Google Scholar 

  36. Ge SG, Yan M, JJ L, Zhang M, Yu F, JH Y, Song XR, SL Y (2012) Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for L-cysteine analysis. Biosens Bioelectron 31:49–54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Project of Anhui Province (No. 1606c08229), Key projects of Natural Science Research of Anhui Province (No. KJ2016A741) and National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710376009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggen Xie.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ye, L., Wang, Y. et al. A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine. Microchim Acta 185, 5 (2018). https://doi.org/10.1007/s00604-017-2578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2578-4

Keywords

Navigation