Skip to main content
Log in

Bifunctional gold nanoparticles as an agglomeration-enhancing tool for highly sensitive lateral flow tests: a case study with procalcitonin

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article proposes a new scheme for increasing the sensitivity of immunochromatographic assays. The scheme based on (a) recognition of dual-component gold nanoparticles (GNPs) conjugated to specific immunoglobulin G (IgG) and biotin, and (b) two additional mono-component conjugates, GNP–biotin and GNP–streptavidin. Antibodies on the surface of the GNP bind to the model antigen used here (the sepsis marker procalcitonin), and additional conjugates amplify the signal creating nanoparticle nets through biotin–streptavidin interaction. This is a one-step multi-interaction assay that requires no additional reagents or manipulations. The assay takes 15 min, and the detection limit is 3 pg mL−1 which is 30 times lower than the conventional test system with the same antibodies. Testing sera of patients with the lowest procalcitonin levels using this method confirmed the efficiency of the new enhancement scheme. In our perception, the approach is universal and can be used in many immunochromatographic assay.

Schematic of the amplification of label binding in immunochromatrography. It leads to a significant improvement in sensitivity due to the use of self-assembling aggregates of gold nanoparticles conjugates conjugated to specific antibodies and biotin groups, and two additional conjugates having streptavidin and biotin groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmed MU, Saaem I, Wu PC, Brown AS (2014) Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol 34(2):180–196. doi:10.3109/07388551.2013.778228

    Article  Google Scholar 

  2. Wang K, Qin W, Hou Y, Xiao K, Yan W (2016) The application of lateral flow immunoassay in point of care testing: a review. Nano Biomedicine and Engineering 8(3):172–183. doi:10.5101/nbe.v8i3.p172-183

    Article  Google Scholar 

  3. Dzantiev, B.B., Byzova, N.A, Urusov, A.E., Zherdev, A.V. (2014) Immunochromatographic methods in food analysis. TrAC – Trends in Analytical Chemistry 55:81–93. DOI: 10.1016/j.trac.2013.11.007.

  4. Zhong Y, Chen Y, Yao L, Zhao D, Zheng L, Liu G, Ye Y, Chen W (2016) Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Microchim Acta 183(6):1989–1994. doi:10.1007/s00604-016-1812-9

    Article  CAS  Google Scholar 

  5. Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y (2014) Nanomaterial-enhanced paper-based biosensors. TrAC – Trends in Analytical Chemistry 58:31–39. doi:10.1016/j.trac.2014.03.008

    Article  CAS  Google Scholar 

  6. Shen GY, Xu H, Gurung AS, Yang YH, Liu GD (2013) Lateral flow immunoassay with the signal enhanced by gold nanoparticle aggregates based on polyamidoamine dendrimer. Anal Sci 29(8):799–804. doi:10.2116/analsci.29.799

    Article  CAS  Google Scholar 

  7. Saerens D, Frederix F, Reekmans G, Conrath K, Jans K, Brys L, Huang L, Bosmans E, Maes G, Borghs G (2005) Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal Chem 77(23):7547–7555. doi:10.1021/ac051092j

  8. Wacker C, Prkno A, Brunkhorst FM, Schlattmann P (2013) Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis 13(5):426–435. doi:10.1016/S1473-3099(12)70323-7

    Article  CAS  Google Scholar 

  9. Hermanson GT (2008) Bioconjugate Techniques. Academic Press, Oxford 

  10. Byzova NA, Zvereva EA, Zherdev AV, Eremin SA, Dzantiev BB (2010) Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta 81(3):843–848. doi:10.1016/j.talanta.2010.01.025

    Article  CAS  Google Scholar 

  11. Cho, I.-H., Irudayaraj, J. (2013) In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. International Journal of Food Microbiology 164 (1):70–75. DOI:.1016/j.ijfoodmicro.2013.02.025.

Download references

Acknowledgements

The authors thank S.M. Pridvorova (Institute of Biochemistry, Federal Centre of Biotechnology, Russian Academy of Sciences) for obtaining the electron microscope images.

The work was financially supported by the Grant of the President of the Russian Federation for state support of young Russian scientists – Ph.D No. MK-2075.2017.4 (agreement No.14.W01.17.2075-MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taranova, N.A., Urusov, A.E., Sadykhov, E.G. et al. Bifunctional gold nanoparticles as an agglomeration-enhancing tool for highly sensitive lateral flow tests: a case study with procalcitonin. Microchim Acta 184, 4189–4195 (2017). https://doi.org/10.1007/s00604-017-2355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2355-4

Keywords

Navigation