Skip to main content
Log in

Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a voltammetric immunosensor for morphine (MOR) that is based on a graphene screen printed electrode (GSPE) modified with gold nanoparticles (AuNP) which were electrodeposited on its surface. The gold nanoparticles were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. Cysteamine was then self-assembled on the gold-modified electrodes via thiol interaction in order to introduce terminal amino groups to the electrode surface. The electrodes were then used to fabricate the immunosensor by covalent immobilization of antibodies against MOR. The sensor works on the basis of a competition between MOR and the morphine-bovine serum albumin (MOR-BSA) conjugate for the immobilized antibodies on the sensor surface and the resulting change in the square wave voltammetry reduction current using the hexacyanoferrate system as an electrochemical probe. The competitive immunoassay enables sensitive and selective detection of MOR in the 0.1 to 100 ng·mL−1 MOR concentration range, with a 90 pg·mL−1 detection limit. The method was applied to the determination of MOR in spiked saliva samples and showed high recoveries. We believe that this immunosensor offers a simple, rapid, sensitive and accurate MOR test.

Schematic of a voltammetric competitive immunosensor for morphine. It is based on a graphene screen printed electrode modified with gold nanoparticles which were electrodeposited on its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stjernsward J (1988) WHO cancer pain relief program. Cancer Surv 7:195–208

    CAS  Google Scholar 

  2. Cherry DA, Gourlay GK (1994) Pharmacological management of chronic pain: a clinician's perspective. Agents Actions 42(3):173–174. doi:10.1007/bf01983487

    Article  CAS  Google Scholar 

  3. Gupta K, Kshirsagar S, Chang L, Schwartz R, Law P-Y, Yee D, Hebbel RP (2002) Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res 62(15):4491–4498

    CAS  Google Scholar 

  4. Ary K, Róna K (2001) LC determination of morphine and morphine glucuronides in human plasma by coulometric and UV detection. J Pharm Biomed Anal 26(2):179–187. doi:10.1016/S0731-7085(01)00393-4

    Article  CAS  Google Scholar 

  5. Kudo K, Ishida T, Nishida N, Yoshioka N, Inoue H, Tsuji A, Ikeda N (2006) Simple and sensitive determination of free and total morphine in human liver and kidney using gas chromatography–mass spectrometry. J Chromatogr B 830(2):359–363. doi:10.1016/j.jchromb.2005.10.049

    Article  CAS  Google Scholar 

  6. Gottardo R, Fanigliulo A, Bortolotti F, De Paoli G, Pascali JP, Tagliaro F (2007) Broad-spectrum toxicological analysis of hair based on capillary zone electrophoresis–time-of-flight mass spectrometry. J Chromatogr A 1159(1–2):190–197. doi:10.1016/j.chroma.2007.05.099

    Article  CAS  Google Scholar 

  7. Projean D, Minh Tu T, Ducharme J (2003) Rapid and simple method to determine morphine and its metabolites in rat plasma by liquid chromatography–mass spectrometry. J Chromatogr B 787(2):243–253. doi:10.1016/S1570-0232(02)00726-2

    Article  CAS  Google Scholar 

  8. Boleda MR, Galceran MT, Ventura F (2007) Trace determination of cannabinoids and opiates in wastewater and surface waters by ultra-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1175(1):38–48. doi:10.1016/j.chroma.2007.10.029

    Article  CAS  Google Scholar 

  9. Pulgarín JAM, Bermejo LFG, Gallego JML, García MNS (2008) Simultaneous stopped-flow determination of morphine and naloxone by time-resolved chemiluminescence. Talanta 74(5):1539–1546. doi:10.1016/j.talanta.2007.09.032

    Article  Google Scholar 

  10. Weng C-H, Yeh W-M, Ho K-C, Lee G-B (2007) A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine. Sens Actuator B-Chem 121(2):576–582. doi:10.1016/j.snb.2006.04.111

    Article  CAS  Google Scholar 

  11. Kriz D, Mosbach K (1995) Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer. Anal Chim Acta 300(1):71–75. doi:10.1016/0003-2670(94)00368-V

    Article  CAS  Google Scholar 

  12. Yeh W-M, Ho K-C (2005) Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode. Anal Chim Acta 542(1):76–82. doi:10.1016/j.aca.2005.01.071

    Article  CAS  Google Scholar 

  13. Navaee A, Salimi A, Teymourian H (2012) Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens Bioelectron 31(1):205–211. doi:10.1016/j.bios.2011.10.018

    Article  CAS  Google Scholar 

  14. Ensafi AA, Heydari-Bafrooei E, Rezaei B (2013) Different interaction of codeine and morphine with DNA: a concept for simultaneous determination. Biosens Bioelectron 41:627–633. doi:10.1016/j.bios.2012.09.039

    Article  CAS  Google Scholar 

  15. Talemi RP, Mashhadizadeh MH (2015) A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode. Talanta 131:460–466. doi:10.1016/j.talanta. 2014.08.009

    Article  CAS  Google Scholar 

  16. Li Y, Zou L, Li Y, Li K, Ye B (2014) A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film. Sens Actuator B-Chem 201:511–519. doi:10.1016/j.snb.2014.05.034

    Article  CAS  Google Scholar 

  17. Li F, Song J, Shan C, Gao D, Xu X, Niu L (2010) Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. Biosens Bioelectron 25(6):1408–1413. doi:10.1016/j.bios.2009.10.037

    Article  CAS  Google Scholar 

  18. Zhang X-X, Li J, Gao J, Sun L, Chang W-B (2000) Determination of morphine by capillary electrophoresis immunoassay in thermally reversible hydrogel-modified buffer and laser-induced fluorescence detection. J Chromatogr A 895(1–2):1–7. doi:10.1016/S0021-9673(00)00590-2

    Article  CAS  Google Scholar 

  19. Gandhi S, Caplash N, Sharma P, Raman Suri C (2009) Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples. Biosens Bioelectron 25(2):502–505. doi:10.1016/j.bios.2009.07.018

    Article  CAS  Google Scholar 

  20. Teerinen T, Lappalainen T, Erho T (2014) A paper-based lateral flow assay for morphine. Anal Bioanal Chem 406(24):5955–5965. doi:10.1007/s00216-014-8001-7

    Article  CAS  Google Scholar 

  21. Sakai G, Ogata K, Uda T, Miura N, Yamazoe N (1998) A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine. Sens Actuator B-Chem 49(1–2):5–12. doi:10.1016/S0925-4005(98)00107-5

    Article  CAS  Google Scholar 

  22. Ya Y, Xiaoshu W, Qing D, Lin J, Yifeng T (2015) Label-free immunosensor for morphine based on the electrochemiluminescence of luminol on indium-tin oxide coated glass functionalized with gold nanoparticles. Anal Methods 7(11):4502–4507. doi:10.1039/c5ay00764j

    Article  CAS  Google Scholar 

  23. Lim SA, Ahmed MU (2016) Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 6(30):24995–25014. doi:10.1039/c6ra00333h

    Article  CAS  Google Scholar 

  24. Ezzati Nazhad Dolatabadi J, de la Guardia M (2014) Nanomaterial-based electrochemical immunosensors as advanced diagnostic tools. Anal Methods 6(12):3891–3900. doi:10.1039/c3ay41749b

    Article  CAS  Google Scholar 

  25. Park CS, Yoon H, Kwon OS (2016) Graphene-based nanoelectronic biosensors. J Ind Eng Chem 38:13–22. doi:10.1016/j.jiec.2016.04.021

    Article  CAS  Google Scholar 

  26. Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212. doi:10.1016/j.bios.2015.07.002

    Article  CAS  Google Scholar 

  27. Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53(19):5848–5866. doi:10.1016/j.electacta.2008.03.005

    Article  Google Scholar 

  28. Sabury S, Kazemi SH, Sharif F (2015) Graphene–gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor. Mater Sci Eng C 49:297–304. doi:10.1016/j.msec.2015.01.018

    Article  CAS  Google Scholar 

  29. Zhu Y, Pan D, Hu X, Han H, Lin M, Wang C (2017) An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters. Sens Actuator B-Chem 243:1–7. doi:10.1016/j.snb.2016.11.108

    Article  CAS  Google Scholar 

  30. Liu G, Qi M, Zhang Y, Cao C, Goldys EM (2016) Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Anal Chim Acta 909:1–8. doi:10.1016/j.aca.2015.12.023

    Article  CAS  Google Scholar 

  31. Singh S, Tuteja SK, Sillu D, Deep A, Suri CR (2016) Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 183(5):1729–1738. doi:10.1007/s00604-016-1803-x

    Article  CAS  Google Scholar 

  32. Pruneanu S, Pogacean F, Biris AR, Ardelean S, Canpean V, Blanita G, Dervishi E, Biris AS (2011) Novel graphene-gold nanoparticle modified electrodes for the high sensitivity electrochemical spectroscopy detection and analysis of carbamazepine. JPhy Chem C 115(47):23387–23394. doi:10.1021/jp206945e

    Article  CAS  Google Scholar 

  33. Yeh Y-C, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880. doi:10.1039/c1nr11188d

    Article  CAS  Google Scholar 

  34. Bozanic DK, Luyt AS, Trandafilovic LV, Djokovic V (2013) Glycogen and gold nanoparticle bioconjugates: controlled plasmon resonance via glycogen-induced nanoparticle aggregation. RSC Adv 3(23):8705–8713. doi:10.1039/c3ra40189h

    Article  CAS  Google Scholar 

  35. Yu Z, Sun S, Huang M (2016) Electrodeposition of gold nanoparticles on electrochemically reduced graphene oxide for high performance supercapacitor electrode materials. Int J Electrochem Sci 11:3643–3650

    Article  CAS  Google Scholar 

  36. Vasile C, Baican MC, Tibirna CM, Tuchilus C, Debarnot D, Pâslaru E, Poncin-Epaillard F (2011) Microwave plasma activation of a polyvinylidene fluoride surface for protein immobilization. J Phys D Appl Phys 44(47):475303

    Article  Google Scholar 

  37. Ge S, Kojio K, Takahara A, Kajiyama T (1998) Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. J Biomater Sci Polym Ed 9:131–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Zourob.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 79.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eissa, S., Zourob, M. Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode. Microchim Acta 184, 2281–2289 (2017). https://doi.org/10.1007/s00604-017-2261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2261-9

Keywords

Navigation