Skip to main content
Log in

Determination of the platelet-derived growth factor BB by a competitive thrombin-linked aptamer-based Fluorometric assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a competitive aptamer based assay for detection of the platelet-derived growth factor BB (PDGF-BB; used as a model protein). The assay is making use of thrombin (a serine protease) as an enzyme label for reporting signals. It is taking advantage of a highly selective aptamer and of the fairly specific enzymatic activity of thrombin in terms of cleaving artificial fluorogenic peptide substrates. In a first step, the surface of wells of microplates is coated with PDGF-BB. On addition of a sample containing PDGF-BB, free and bound PDGF-BB compete with each other for binding to a DNA probe that consists of an aptamer sequence for PDGF-BB and a 29-mer aptamer sequence for thrombin. After washing, thrombin is added and will attach to the DNA probe that bound to the PDGF-BB on the microplates. Following addition of a fluorogenic peptide substrate, the bound thrombin will catalyze the cleavage of the substrate to generate a fluorescent product whose fluorescence intensity is measured at excitation/emission wavelengths of 370/440 nm. Fluorescence intensity decreases with increasing PDGF-BB concentration in the sample because less thrombin will bind to the PDGF-BB coated surface of the microplate. Under optimal conditions, PDGF-BB can be quantified in the 0.125 to 3 nM concentration range. This assay was successfully applied to the determination of PDGF-BB in spiked 100-fold diluted human serum.

In a competitive thrombin-linked aptamer assay, free platelet-derived growth factor BB (PDGF-BB) sample competes with the PDGF-BB coated on microplates for binding to a DNA probe containing PDGF-BB-binding aptamer and thrombin-binding aptamer. The labeled thrombin cleaves substrate into product, achieving signal generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi:10.1038/346818a0

    Article  CAS  Google Scholar 

  2. Tuerk C, Gold L (1990) Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. doi:10.1126/science.2200121

    Article  CAS  Google Scholar 

  3. Song SP, Wang SH, Li J, Zhao JL, Fan CH (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117. doi:10.1016/j.trac.2007.12.004

    Article  CAS  Google Scholar 

  4. Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC (2015) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87:274–292. doi:10.1021/ac5037236

    Article  CAS  Google Scholar 

  5. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181:479–491. doi:10.1007/s00604-013-1156-7

    Article  CAS  Google Scholar 

  6. Deng B, Lin YW, Wang C, Li F, Wang ZX, Zhang H, Li XF, Le XC (2014) Aptamer binding assays for proteins: the thrombin example-a review. Anal Chim Acta 837:1–15. doi:10.1016/j.aca.2014.04.055

    Article  CAS  Google Scholar 

  7. Lee HJ, Kim BC, Oh MK, Kim J (2012) A sensitive and reliable detection of thrombin via enzyme-precipitate-coating-linked aptamer assay. Chem Commun 48:5971–5973. doi:10.1039/c2cc30710c

    Article  CAS  Google Scholar 

  8. Lin Z, Pan D, Hu T, Liu Z, Su X (2015) A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim Acta 182:1933–1939. doi:10.1007/s00604-015-1526-4

    Article  CAS  Google Scholar 

  9. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566. doi:10.1038/355564a0

    Article  CAS  Google Scholar 

  10. Tasset DM, Kubik MF, Steiner W (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272:688–698. doi:10.1006/jmbi.1997.1275

    Article  CAS  Google Scholar 

  11. Zhao Q, Li XF, Le XC (2011) Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity. Anal Chem 83:9234–9236. doi:10.1021/ac203063z

    Article  CAS  Google Scholar 

  12. Zhao Q, Wang XF (2012) An aptamer-capture based chromogenic assay for thrombin. Biosens Bioelectron 34:232–237. doi:10.1016/j.bios.2012.02.009

    Article  CAS  Google Scholar 

  13. Guo L, Zhao Q (2016) Thrombin-linked aptamer assay for detection of platelet derived growth factor BB on magnetic beads in a sandwich format. Talanta 158:159–164. doi:10.1016/j.talanta.2016.05.037

    Article  CAS  Google Scholar 

  14. Baldrich E, Acero JL, Reekmans G, Laureyn W, O’Sullivan CK (2005) Displacement enzyme linked aptamer assay. Anal Chem 77:4774–4784. doi:10.1021/ac0502450

    Article  CAS  Google Scholar 

  15. Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:222–2229. doi:10.1021/ja060005h

    Google Scholar 

  16. Wang S, Yong W, Liu JH, Zhang LY, Chen QL, Dong YY (2014) Development of an indirect competitive assay- based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosens Bioelectron 57:192–198. doi:10.1016/j.bios.2014.02.032

    Article  CAS  Google Scholar 

  17. Cao JT, Zhang JJ, Gong Y, Ruan XJ, Liu YM, Chen YH, Ren SW (2015) A competitive photoelectrochemical aptasensor for thrombin detection based on the use of TiO2 electrode and glucose oxidase label. J Electroanal Chem 759:46–50. doi:10.1016/j.jelechem.2015.11.023

    Article  CAS  Google Scholar 

  18. Pope DFB, Malpass TW, Foster DM, Ross R (1984) Platelet-derived growth factor in vivo: levels, activity, and rate of clearance. Blood 64:458–469

    Google Scholar 

  19. Westermark B, Heldin CH (1993) Platelet-derived growth factor, structure, function and implications in normal and malignant cell growth. Acta Oncol 32:101–105. doi:10.3109/02841869309083897

    Article  CAS  Google Scholar 

  20. Heldin CH (1992) Structural and functional studies on platelet-derived growth factor. EMBO J 11:4251–4259

    CAS  Google Scholar 

  21. Li H, Zhu Y, Dong SY, Qiang WB, Sun L, Xu DK (2014) Fast functionalization of silver decahedral nanoparticles with aptamers for colorimetric detection of human platelet derived growth factor-BB. Anal Chim Acta 829:48–53. doi:10.1016/j.aca.2014.04.034

    Article  CAS  Google Scholar 

  22. Liu JJ, Song XR, Wang YW, Zheng AX, Chen GN, Yang HH (2012) Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Anal Chim Acta 749:70–74. doi:10.1016/j.aca.2012.09.002

    Article  CAS  Google Scholar 

  23. Liang JF, Wei R, He S, Liu YK, Guo L, Li LD (2013) A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Analyst 138:1726–1732. doi:10.1039/c2an36529d

    Article  CAS  Google Scholar 

  24. Zhu DB, Zhou XM, Xing D (2010) A new kind of aptamer-base immunomagnetic electrochemiluminescence assay for quantitative detection of protein. Biosens Bioelectron 26:285–288. doi:10.1016/j.bios.2010.06.028

    Article  CAS  Google Scholar 

  25. Wu ZS, Zhou H, Zhang SB, Shen GL, Yu RQ (2010) Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Anal Chem 82:2282–2289. doi:10.1021/ac902400n

    Article  CAS  Google Scholar 

  26. Wang P, Song YH, Zhao YJ, Fan AP (2013) Hydroxylamine amplified gold nanoparticle-based aptameric system for the highly selective and sensitive detection of platelet-derived growth factor. Talanta 103:392–397. doi:10.1016/j.talanta.2012.10.087

    Article  CAS  Google Scholar 

  27. Jin X, Zhao JJ, Zhang LL, Huang Y, Zhao SL (2014) An enhanced fluorescence polarization strategy based on multiple protein-DNA-protein structures for sensitive detection of PDGF-BB. RSC Adv 4:6850–6685. doi:10.1039/c3ra44092c

    Article  CAS  Google Scholar 

  28. Bi S, Luo BY, Ye JY, Wang ZH (2014) Lable-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification. Biosens Bioelectron 62:208–231. doi:10.1016/j.bios.2014.06.057

    Article  CAS  Google Scholar 

  29. Yao LY, Yu XQ, Zhao YJ, Fan AP (2015) An aptamer-based chemiluminescence method for ultrasensitive detection of platelet-derived growth factor by cascade amplification combining rolling circle amplification with hydroxylamine-enlarged gold nanoparticles. Anal Methods 7:8786–8792. doi:10.1039/c5ay01953b

    Article  CAS  Google Scholar 

  30. Zhang JJ, Cao JT, Shi GF, Huang KJ, Liu YM, Ren SW (2015) A luminol electrochemiluminescence aptasensor based on glucose oxidase modified gold nanoparticles for measurement of platelet-derived growth factor BB. Talanta 132:65–71. doi:10.1016/j.talanta.2014.08.058

    Article  CAS  Google Scholar 

  31. Zhang J, Yuan YL, Shun BX, Chai YQ, Yuan R (2014) Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA-PtNPs dendrimer as a synergetic signal amplification label. Biosens Bioelectron 60:224–230. doi:10.1016/j.bios.2014.04.024

    Article  CAS  Google Scholar 

  32. Hu HT, Li H, Zhao YJ, Dong SY, Li W, Qiang WB, Xu DK (2014) Aptamer-functionalized silver nanoparticles for scanometric detection of platelet-derived growth factor-BB. Anal Chim Acta 812:152–160. doi:10.1016/j.aca.2013.12.026

    Article  CAS  Google Scholar 

  33. Wang QP, Zheng HY, Gao XY, Lin ZY, Chen GN (2013) A label-free ultrasensitive electrochemical aptameric recognition system for protein assay based on hyperbranched rolling circle amplification. Chem Commun 49:11418–11420. doi:10.1039/c3cc46274a

    Article  CAS  Google Scholar 

  34. Zhang H, Li XF, Le XC (2009) Differentiation and detection of PDGF isomers and their receptors by tunable aptamer capillary electrophoresis. Anal Chem 81:7795–7800. doi:10.1021/ac901471w

    Article  CAS  Google Scholar 

  35. Penmatsa V, Ruslinda AR, Beidaghi M, Kawarada H, Wang CL (2013) Platelet-derived growth factor oncoprotein detection using three-dimensional carbon microarrays. Biosens Bioelectron 39:118–123. doi:10.1016/j.bios.2012.06.055

    Article  CAS  Google Scholar 

  36. Huang CC, Chiu SH, Huang YF, Chang HT (2007) Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal Chem 79:4798–4804. doi:10.1021/ac0707075

    Article  CAS  Google Scholar 

  37. Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35:14413–14424. doi:10.1021/bi961544+

    Article  CAS  Google Scholar 

  38. Fang XH, Cao ZH, Beck T, Tan WH (2001) Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Anal Chem 73:5752–5757. doi:10.1021/ac010703e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 21222503, 21435008, 21575153), Outstanding Youth Talents Program of Shanxi Province, and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14030200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zhao, Q. Determination of the platelet-derived growth factor BB by a competitive thrombin-linked aptamer-based Fluorometric assay. Microchim Acta 183, 3229–3235 (2016). https://doi.org/10.1007/s00604-016-1978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1978-1

Keywords

Navigation