Skip to main content
Log in

Colorimetric detection of H2O2 using flower-like Fe2(MoO4)3 microparticles as a peroxidase mimic

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the preparation of Fe2(MoO4)3 materials with micrometer dimensions, and show that they are highly efficient peroxidase mimics that can be used in a photometric assay for H2O2. Depending on the experimental conditions of synthesis, the Fe2(MoO4)3 micromaterials display different morphologies, surface properties, and peroxidase-like activities. Among them, Fe2(MoO4)3 with flower-like structure has the largest BET specific surface area and the most negative potential. It exhibits the best peroxidase mimetic activity in catalyzing the oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of H2O2 to generate a blue-green product. Based on these findings, method was worked out for H2O2 determination that allows both visual and photometric read-out. The assay has a detection limit as low as 0.7 μM, is selective and practical. Given its sensitivity, the method has a good potential with respect to determination of H2O2 in clinical samples but also in oxidase-type of reactions where H2O2 is being produced.

Flower-like Fe2(MoO4)3 microparticles are prepared as a simple and highly sensitive biomimetic catalyst and used for colorimetric detection of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xiang ZB, Wang Y, Ju P, Zhang D (2016) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183(1):457–463

    Article  CAS  Google Scholar 

  2. Zhang TB, YC L, Luo GS (2014) Synthesis of hierarchical iron hydrogen phosphate crystal as a robust peroxidase mimic for stable H2O2 detection. ACS Appl Mater Interfaces 6(16):14433–14438

    Article  CAS  Google Scholar 

  3. Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C, Tang HQ (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165(3–4):299–305

    Article  CAS  Google Scholar 

  4. Liu ZH, Cai RX, Mao LY, Huang HP, Ma WH (1999) Highly sensitive spectrofluorimetric determination of hydrogen peroxide with β-cyclodextrin-hemin as catalyst. Analyst 124(2):173–176

    Article  CAS  Google Scholar 

  5. Khorshid A, Amin RR, Issa YM (2013) Fabrication of a novel highly selective and sensitive nano-molar Cu(I), Cu(II) membrane sensors based on thiosemicarbazide and acetaldehydethiosemi-carbazone copper complexes. J Chem Acta 1(1):52–58

    Google Scholar 

  6. Chen X, Zhou XD, JM H (2012) Pt-DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H2O2 and glucose. Anal Methods 4(7):2183–2187

    Article  CAS  Google Scholar 

  7. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  8. Qiao FM, Chen LJ, Li XN, Li LF, Ai SY (2014) Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sensors Actuators B 193(3):255–262

    Article  CAS  Google Scholar 

  9. Song YJ, KG Q, Zhao C, Ren JS, XG Q (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    Article  CAS  Google Scholar 

  10. Chang Q, Tang HQ (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181(5–6):527–534

    Article  CAS  Google Scholar 

  11. Pérez-López B, Arben M (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179(1–2):1–16

    Article  Google Scholar 

  12. Ju P, Xiang YH, Xiang ZB, Wang M, Zhao Y, Zhang D, JQ Y, Han XX (2016) BiOI hierarchical nanoflowers as novel robust peroxidase mimetics for colorimetric detection of H2O2. RSC Adv 6(21):17483–17493

    Article  CAS  Google Scholar 

  13. Chen LJ, Sun B, Wang XD, Qiao FM, Ai SY (2013) 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in L-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose. J Mater Chem B 1(17):2268–2274

    Article  CAS  Google Scholar 

  14. Wang W, Jiang XP, Chen KZ (2012) CePO4: Tb, Gd hollow nanospheres as peroxidase mimic and magnetic-fluorescent imaging agent. Chem Commun 48(54):6839–6841

    Article  CAS  Google Scholar 

  15. Qiao FM, Wang Z, Xu K, Ai SY (2015) Double enzymatic cascade reactions within FeSe-Pt@SiO2 nanospheres: Synthesis and application toward colorimetric biosensing of H2O2 and glucose. Analyst 140(19):6684–6691

    Article  CAS  Google Scholar 

  16. YZ Y, Ju P, Zhang D, Han XX, Yin XF, Zheng L, Sun CJ (2016) Peroxidase-like activity of FeVO4 nanobelts and its analytical application for optical detection of hydrogen peroxide. Sensors Actuators B 233:162–172

    Article  Google Scholar 

  17. Ding CP, Yan YH, Xiang DS, Zhang CL, Xian YZ (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183(2):625–631

    Article  CAS  Google Scholar 

  18. Wang N, Sun JC, Chen LJ, Fan H, Ai SY (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182(9):1733–1738

    Article  CAS  Google Scholar 

  19. Čunderlová V, Hlaváček A, Horňáková V, Peterek M, Němeček D, Hampl A, Eyer L, Skládal P (2016) Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays. Microchim Acta 183(2):651–658

    Article  Google Scholar 

  20. Zhang Y, Lu F, Yan ZQ, Wu D, Ma HM, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182:1421–1429

    Article  CAS  Google Scholar 

  21. Liang G, Liu XH (2015) G-quadruplex based impedimetric 2-hydroxyfluorene biosensor using hemin as a peroxidase enzyme mimic. Microchim Acta 182(13):2233–2240

    Article  CAS  Google Scholar 

  22. Hayat A, Haider W, Raza Y, Marty JL (2015) Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta 143:157–161

    Article  CAS  Google Scholar 

  23. JS M, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542

    Article  Google Scholar 

  24. Lin YH, Ren JS, XG Q (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    Article  CAS  Google Scholar 

  25. Li D, Xue JQ, Liu MB (2015) Synthesis of Fe2(MoO4)3 microspheres by self-assembly and photocatalytic performances. New J Chem 39:1910–1915

    Article  CAS  Google Scholar 

  26. Zhang ZY, Li WY, Ng TW, Kang WP, Lee CS, Zhang WJ (2015) Iron(II) molybdate (FeMoO4) nanorods as a high-performance anode for lithium ion batteries: structural and chemical evolution upon cycling. J Mater Chem A 3(41):20527–20534

    Article  CAS  Google Scholar 

  27. Kim TH, Ramachandra B, Choi JS, Saidutta MB, Choo KY, Song SD, Rhee YW (2004) Selective oxidation of methanol to formaldehyde using modified iron-molybdate catalysts. Catal Lett 98(2):161–165

    Article  CAS  Google Scholar 

  28. Liu HY, CC G, Li DJ, Zhang MZ (2015) Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO4 nanostructures produced by convenient microwave-hydrothermal method. Mater Res Bull 64:375–379

    Article  CAS  Google Scholar 

  29. Ye LQ, Chen JN, Tian LH, Liu JY, Peng TY, Deng KJ, Zan L (2013) BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism. Appl Catal B Environ:130–131

  30. Song YP, Wang H, Li ZH, Ye NQ, Wang LJ, Liu Y (2015) Fe2(MoO4)3 nanoparticle-anchored MoO3 nanowires: strong coupling via the reverse diffusion of heteroatoms and largely enhanced lithium storage properties. RSC Adv 5:16386–16393

    Article  CAS  Google Scholar 

  31. Chen LJ, Wang N, Wang XD, Ai SY (2013) Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. Microchim Acta 180(15):1517–1522

    Article  CAS  Google Scholar 

  32. Li LL, Ai LH, Zhang CH, Jiang J (2014) Hierarchical {001}-faceted BiOBr microspheres as a novel biomimetic catalyst: dark catalysis towards colorimetric biosensing and pollutant degradation. Nanoscale 6(9):4627–4634

    Article  CAS  Google Scholar 

  33. Nicell JA, Wright H (1997) A model of peroxidase activity with inhibition by hydrogen peroxide. Enzym Microb Technol 21(4):302–310

    Article  CAS  Google Scholar 

  34. Chattopadhyay K, Mazumdar S (2000) Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry 39(1):263–270

    Article  CAS  Google Scholar 

  35. Ai LH, Li LL, Zhang CH, Fu J, Jiang J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem-Eur J 19(19):15105–15108

    Article  CAS  Google Scholar 

  36. Porter DJ, Bright HJ (1983) The mechanism of oxidation of nitroalkanes by horseradish peroxidase. J Biol Chem 258(16):9913–9924

    CAS  Google Scholar 

  37. Wei H, Wang EK (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    Article  CAS  Google Scholar 

  38. Lv CJ, Di WH, Liu ZH, Zheng KZ, Qin WP (2014) Luminescent CePO4: Tb colloids for H2O2 and glucose sensing. Analyst 139(18):4547–4555

    Article  CAS  Google Scholar 

  39. Dutta AK, Maji SK, Srivastava DN, Mondal A, Biswas P, Paul P, Adhikary B (2012) Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl Mater Interfaces 4(4):1919–1927

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China-Shandong Joint Funded Project (U1406403), Qingdao Talent (13-CX-20), National Science Foundation of China (41306074), “Top Hundred Talents Program” of Chinese Academy of Sciences (CAS) and the CAS-Japan Society for the Promotion of Science (JSPS) Collaborative Research Program (GJHZ1317). C.J. Sun would also like to thank support from Taishan Scholar and the Ministry of Human Resources and Social Security of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuxun Han or Chengjun Sun.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Bing Wang and Peng Ju contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 14031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ju, P., Zhang, D. et al. Colorimetric detection of H2O2 using flower-like Fe2(MoO4)3 microparticles as a peroxidase mimic. Microchim Acta 183, 3025–3033 (2016). https://doi.org/10.1007/s00604-016-1955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1955-8

Keywords

Navigation