Skip to main content
Log in

Urea-modified metal-organic framework of type MIL-101(Cr) for the preconcentration of phosphorylated peptides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mass spectrometry (MS) is the most powerful tool in phosphoproteomics research. However, phosphopeptides usually are present in low concentrations and their preconcentration therefore is highly desired. We describe a two-step method for the synthesis of a metal organic framework of the type MIL-101(Cr) that is modified with urea (then designated as MIL-101(Cr)-UR2). It possesses large surface area, good solvent stability and high affinity for some phosphates. Due to the presence of modified urea functions, this material allows for selective and effective enrichment of phosphorylated peptides. It was successfully applied to the enrichment of phosphopeptides from non-fat-milk. The method was applied to the detection of phosphopeptides in a tryptic digest of β-casein where is showed a detection sensitivity as low as 10−10 M.

A two step method was designed to synthesis MIL-101(Cr)-UR2 and the prepared green solid was successfully applied to recognize phosphopeptides. (Amino functionalized metal-organic framework (MOF-NH2); urea modified metal-organic framework (MOF-UR2); matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS))

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Philippe PR, Pierre T (2013) The coming of age of phosphoproteomics-from large data sets to inference of protein functions. Mol Cell Proteomics 12:3453–3464

    Article  Google Scholar 

  2. Pawson T, Scott JD (2005) Protein phosphorylation in signaling-50 years and counting. Trends Biochem Sci 30:286–290

    Article  CAS  Google Scholar 

  3. Mann M, Ong SE, Gronborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    Article  CAS  Google Scholar 

  4. Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080

    Article  CAS  Google Scholar 

  5. Kailasa SK, Wu HF (2014) Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes. Microchim Acta 181:853–864

    Article  CAS  Google Scholar 

  6. Leitner A, Sturm M, Hudecz O, Mazanek M, Smatt JH, Linden M, Lindner W, Mechtler K (2010) Probing the phosphoproteome of HeLa cells using Nanocast metal oxide microspheres for phosphopeptide enrichment. Anal Chem 82:2726–2733

    Article  CAS  Google Scholar 

  7. Zeng YY, Chen HJ, Shiau KJ, Hung SU, Wang YS, Wu CC (2012) Efficient enrichment of phosphopeptides by magnetic TiO2-coated carbon-encapsulated iron nanoparticles. Proteomics 12:380–390

    Article  CAS  Google Scholar 

  8. Batalha IL, Lowe CR, Roque AC (2012) Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol 30:100–110

    Article  CAS  Google Scholar 

  9. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of Monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671

    Article  CAS  Google Scholar 

  10. Xu L, Hu YF, Shen F, Li QS, Ren XQ (2013) Specific recognition of tyrosine-phosphorylated peptides by epitope imprinting of phenylphosphonic acid. J Chromatogr A 1293:85–91

    Article  CAS  Google Scholar 

  11. Li QS, Shen F, Zhang X, Hu YF, Zhang QX, Xu L, Ren XQ (2013) One-pot synthesis of phenylphosphonic acid imprinted polymers for tyrosine phosphopeptides recognition in aqueous phase. Anal Chim Acta 795:82–87

    Article  CAS  Google Scholar 

  12. Zhao M, Deng CH, Zhang XM (2014) The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun 50:6228–6231

    Article  CAS  Google Scholar 

  13. Zhu XY, Gu JL, Yang J, Wang Z, Li YS, Zhao LM, Zhao WR, Shi JL (2015) Zr-based metal–organic frameworks for specific and size-selective enrichment of phosphopeptides with simultaneous exclusion of proteins. J Mater Chem B 3:4242–4248

    Article  CAS  Google Scholar 

  14. Xu LN, Li LP, Jin L, Bai Y, Liu HW (2014) Guanidyl-functionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides. Chem Commun 50:10963–10966

    Article  CAS  Google Scholar 

  15. Xiong ZC, Chen YJ, Zhang LY, Ren J, Zhang QQ, Ye ML, Zhang WB, Zou HF (2014) Facile synthesis of guanidyl-functionalized magnetic polymer microspheres for tunable and specific capture of global phosphopeptides or only multiphosphopeptides. ACS Appl Mater Interfaces 6:22743–22750

    Article  CAS  Google Scholar 

  16. Deng QL, Wu JH, Chen Y, Zhang ZJ, Wang Y, Fang GZ, Wang S, Zhang YK (2014) Guanidinium functionalized superparamagnetic silica spheres for selective enrichment of phosphopeptides and intact phosphoproteins from complex mixtures. J Mater Chem B 2:1048–1058

    Article  CAS  Google Scholar 

  17. Emgenbroich M, Borrelli C, Shinde S, Lazraq I, Vilela F, Hall AJ, Oxelbark J, Lorenzi ED, Courtois J, Simanova A, Verhage J, Irgum K, Karim K, Sellergren B (2008) A Phosphotyrosine-imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. Chem Eur J 14:9516–9529

    Article  CAS  Google Scholar 

  18. Chen J, Shinde S, Koch M-H, Eisenacher M, Galozzi S, Lerari T, Barkovits K, Subedi P, Krüger R, Kuhlmann K, Sellergren B, Helling S, Marcus K (2015) Low-bias phosphopeptide enrichment from scarce samples using plastic antibodies. Sci Rep 11438:1–12

    Google Scholar 

  19. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Article  Google Scholar 

  20. Férey G, Mellot-Draznieks C, Serre C, Millange F (2005) Crystallized frameworks with Giant pores: are there limits to the possible? Acc Chem Res 38:217–225

    Article  Google Scholar 

  21. Li JR, Sculley J, Zhou HC (2012) MetalOrganic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  22. Gu ZY, Yang CX, Chang N, Yan XP (2012) Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745

    Article  CAS  Google Scholar 

  23. Chen BL, Xiang SC, Qian GD (2010) Metal − organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    Article  CAS  Google Scholar 

  24. Sonnauer A, Hoffmann F, Froba M, Kienle K, Duppel V, Thommes M, Serre C, Férey G, Stock N (2009) Giant pores in a chromium 2,6-Naphthalenedicarboxylate open-framework structure with MIL-101 topology. Angew Chem Int Ed 48:3791–3794

    Article  CAS  Google Scholar 

  25. Wang Z, Cohen SM (2009) Postsynthetic modification of metal–organic frameworks. Chem Soc Rev 38:1315–1329

    Article  CAS  Google Scholar 

  26. Cohen SM (2010) Modifying MOFs: new chemistry, new materials. Chem Sci 1:32–36

    Article  CAS  Google Scholar 

  27. Luo XB, Ding L, Luo JM (2015) Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal–organic frameworks MIL-101(Cr). J Chem Eng Data 60:1732–1743

    Article  CAS  Google Scholar 

  28. Bernt S, Guillerm V, Serreband C, Stock N (2011) Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun 47:2838–2840

    Article  CAS  Google Scholar 

  29. Lin YC, Kong CL, Chen L (2012) Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture. RSC Adv 2:6417–6419

    Article  CAS  Google Scholar 

  30. Chen YJ, Xiong ZC, Peng L, Gan YY, Zhao YM, Shen J, Qian JH, Zhang LY, Zhang WB (2015) Facile preparation of Core − Shell magnetic metal − organic framework nanoparticles for the selective capture of phosphopeptides. Appl Mater Interfaces 7:16338–16347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC23800) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 8126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Xia, Y. Urea-modified metal-organic framework of type MIL-101(Cr) for the preconcentration of phosphorylated peptides. Microchim Acta 183, 2235–2240 (2016). https://doi.org/10.1007/s00604-016-1860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1860-1

Keywords

Navigation