Skip to main content

Advertisement

Log in

Dynamic evaluation of cell-secreted interferon gamma in response to drug stimulation via a sensitive electro-chemiluminescence immunosensor based on a glassy carbon electrode modified with graphene oxide, polyaniline nanofibers, magnetic beads, and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive electrochemiluminescent (ECL) immunosensor was developed for real-time and dynamic evaluation of the concentration of interferon gamma (IFN-γ) that is secreted by peripheral blood mononuclear cells. IFN-γ is a diagnostic marker for latent infections with Mycobacterium tuberculosis (MTB), and its levels vary in response to drugs stimulation. The ECL immunosensor was fabricated by attaching gold nanoparticle-coated magnetic beads (AuNP@MB) on a nanofiber prepared from graphene oxide and polyaniline (GO-PANI-NF). The sensor possesses a three-dimensional structure nanocomposite that is beneficial for immobilization of primary antibodies (Ab1), and this enhances the intensity of ECL. The assay is based on a sandwich-type immunoreaction in which secondary antibodies (Ab2) labeled with CdS quantum dots (QDs) are used to generate ECL. The assay has a wide linear range (0.1–500 pg⋅mL−1) and a low detection limit (30 fg∙mL−1). The method was applied to real-time and dynamic determination of IFN-γ in supernatants of peripheral blood mononuclear cells in response to stimulation by chlorogenic acid. Conceivably, it may be used for monitoring the dynamic variation of biomarkers in cells supernatants in response to drug stimulation and to diagnose other infectious diseases.

An electrochemiluminescent immunosensor was developed for real-time and dynamic evaluation of the concentration of interferon gamma (IFN-γ). Analysis is based on the use of gold nanoparticle-coated magnetic beads (AuNP@MB) that were attached to a nanofiber prepared from graphene oxide and polyaniline (GO-PANI-NF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization (WHO). (2014) Global tuberculosis control-surveillance, planning, Financing. Geneva: WHO Report; (WHO/HTM/TB/2014.08)

  2. Robert SW, Madhukar P, Dick MT, Mark D, Gerhard W, DP M, Alimuddin Z (2010) Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 375:1920

    Article  Google Scholar 

  3. Shakak AOK, Eltahir AGM, Ahmed MS, Kawthar AEMB, Abd EAA, Ala HI, Fath EME, Ahmed M (2013) Prevalence of latent tuberculosis infection in Sudan: a case-control study comparing interferon-gamma release assay and tuberculin skin test. BMC Public Health 13

  4. Aoe K, Hiraki A, Murakami T, Murakami K, Makihata K, Takao K, Eda R, Maeda T, Sugi K, Darzynkiewicz Z, Takeyama H (2003) Relative abundance and patterns of correlation among six cytokines in pleural fluid measured by cytometric bead array. Int J Mol Med 12:193

    CAS  Google Scholar 

  5. Chang CC, Lin S, Lee CH, Chuang TL, Hsueh PR, Lai HC, Lin CW (2012) Amplified surface plasmon resonance immunosensor for interferon-gamma based on a streptavidin-incorporated aptamer. Biosens Bioelectron 37(1):68

    Article  CAS  Google Scholar 

  6. Kiran IM, Rabia H, Nisar R, Martin ER, Naseem S, Muhammad I, Zahra H (2014) Differential early secreted antigen Target (ESAT) 6 kDa–induced IFN-γ and SOCS1 expression distinguishes latent and active tuberculosis. J Infect Dev Countr 8:59

    Google Scholar 

  7. Frahm M, Goswami ND, Owzar K, Hecker E, Mosher A, Cadogan E, Nahid P, Ferrari G, Stout JE (2011) Discriminating between latent and active tuberculosis with multiple biomarker responses. Tuberculosis 91:250

    Article  CAS  Google Scholar 

  8. Felix CR, Anja S, Albert N (2012) Interferon-gamma release assays for the tuberculosis serial testing of health care workers: a systematic review. J Occup Med Toxicol 7:1745

    Google Scholar 

  9. Delia G, Stefania C, Harriet MK, Joy B, Michael AM, Enrico G, Zahra T (2008) Response to M. tuberculosis selected RD1 peptides in Ugandan HIV-infected patients with smear positive pulmonary tuberculosis: a pilot study. BMC Infect Dis 8:1471

    Google Scholar 

  10. Toru MMS, Fumio Y, Tetsuya T, Yoshiko K, Keiji N, H N, Eriko S, Satoshi M, Masaji O, Katsuhiro S, Yoshikazu I, Kazunari T, HM G, Izuo T (2004) Specific detection of tuberculosis infection An interferon-γ-based assay using New antigens. Am J Respir Crit Care Med 170:59

    Article  Google Scholar 

  11. Kim JH, Chang YW, Bok E, Kim HJ, Lee H, Cho SN, Shin JS, Yoo KH (2014) Detection of IFN-γ for latent tuberculosis diagnosis using an anodized aluminum oxide-based capacitive sensor. Biosens Bioelectron 51:366

    Article  CAS  Google Scholar 

  12. Zheng T, Fu JJ, Hu L, Qiu F, Hu M, Zhu JJ, Hua ZC, Wang H (2013) Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces. Anal Chem 85:5609

    Article  CAS  Google Scholar 

  13. Ammam M (2014) Electrochemical and electrophoretic deposition of enzymes: principles, differences and application in miniaturized biosensor and biofuel cell electrodes. Biosens Bioelectron 58:121

    Article  CAS  Google Scholar 

  14. Elif BB, Mustafa KS (2015) Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132:162

    Article  Google Scholar 

  15. Huang JM, Henihan G, Macdonald D, Michalowski A, Templeton K, Gibb AP, Schulze H, Bachmann TT (2015) Rapid electrochemical detection of New Delhi Metallo-Beta-lactamase Genes To Enable Point-Of-Care testing of carbapenem-resistant enterobacteriaceae. Anal Chem 87:7738

    Article  CAS  Google Scholar 

  16. Zhang L, Han Y, Zhao F, Shi G, Tian Y (2015) A selective and accurate ratiometric electrochemical biosensor for monitoring of Cu2+ ions in a rat brain. Anal Chem 87:2931

    Article  CAS  Google Scholar 

  17. Zhao J, Chen C, Zhang L, Jiang J, Yu R (2012) An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection. Biosens Bioelectron 36:129

    Article  CAS  Google Scholar 

  18. Huang HX, Li J, Shi S, Yan YQ, Zhang MY, Wang PC, Zeng GC, Jiang ZY (2015) Detection of interferon-gamma for latent tuberculosis diagnosis using an immunosensor based on CdS Quantum dots coupled to magnetic beads as labels. Int J Electrochem Sci 10:2580

    CAS  Google Scholar 

  19. Zhang Y, Yan Y, Zhang B, Zhu W, He Y, Huang H, Li J, Jiang Z, Tan S, Cai X (2015) Fabrication of an interferon-gamma-based ITO detector for latent tuberculosis diagnosis with high stability and lower cost. J Solid State Electrochem 19:3111

    Article  CAS  Google Scholar 

  20. Mark MR (2004) Electrochemiluminescence (ECL). Chem Soc Rev 104:3003

    Article  Google Scholar 

  21. Liu Z, Qi W, Xu G (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44:3117

    Article  CAS  Google Scholar 

  22. Jie G, Yuan J (2012) Novel magnetic Fe3O4@CdSe composite Quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal Chem 84:2811

    Article  CAS  Google Scholar 

  23. Deng S, Lei J, Huang Y, Cheng Y, Ju H (2013) Electrochemiluminescent quenching of Quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin. Anal Chem 85:5390

    Article  CAS  Google Scholar 

  24. Zhang P, Wu X, Yuan R, Chai Y (2015) An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Anal Chem 87:3202

    Article  CAS  Google Scholar 

  25. Han E, Ding L, Jin S, Ju H (2011) Electrochemiluminescent biosensing of carbohydrate-functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate. Biosens, Bioelectron 26:2500

    Article  CAS  Google Scholar 

  26. Feng QM, Liu Z, Chen HY, Xu JJ (2014) Paper-based electrochemiluminescence biosensor for cancer cell detection. Electrochem Commun 49:88

    Article  CAS  Google Scholar 

  27. Zhou H, Yang Y, Li C, Yu B, Zhang S (2014) Enhanced iridium complex electrochemiluminescence cytosensing and dynamic evaluation of cell-surface carbohydrate expression. Chem Eur J 20:14736

    Article  CAS  Google Scholar 

  28. Sennikov SV, Krysov SV, Injelevskaya TV, Silkov AN, Grishina LV, Kozlov VA (2003) Quantitative analysis of human immunoregulatory cytokines by electrochemiluminescence method. J Immunol Methods 275:81

    Article  CAS  Google Scholar 

  29. Bertoncello P, Stewart AJ, Dennany L (2014) Analytical applications of nanomaterials in electrogenerated chemiluminescence. Analy Bioanal Chem 406:5573

    Article  CAS  Google Scholar 

  30. Wang JP, Zhang DH (2013) One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications. Adv Poly Tech 32:E323

    Article  CAS  Google Scholar 

  31. Wang GW, Lu YN, Wang LP, Wang HJ, Wang JY (2014) Nanostructured conducting polymers and their biomedical applications. J Nanosci Nanotechno 14:596

    Article  CAS  Google Scholar 

  32. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906

    Article  CAS  Google Scholar 

  33. Hsu YC, Tseng LC, Lee RH (2014) Graphene oxide sheet-polyaniline nanohybrids for enhanced photovoltaic performance of dye-sensitized solar cells. J Polym Sci Pol Phys 52:321

    Article  CAS  Google Scholar 

  34. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4:1871

    Article  CAS  Google Scholar 

  35. Man Y, Lv X, Iqbal J, Peng G, Song D, Zhang C, Deng Y (2014) Microchip based and immunochromatographic strip assays for the visual detection of interleukin-6 and of tumor necrosis factor α using gold nanoparticles as labels. Microchim Acta 182:597

    Article  Google Scholar 

  36. Hai H, Yang F, Li J (2014) Highly sensitive electrochemiluminescence “turn-on” aptamer sensor for lead(II) ion based on the formation of a G-quadruplex on a graphene and gold nanoparticles modified electrode. Microchim Acta 181:893

    Article  CAS  Google Scholar 

  37. Zheng T, Fu JJ, Hu L, Qiu F, Hu M, Zhu JJ, Hua ZC, Wang H (2013) Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces. Analy Chem 85:5609

    Article  CAS  Google Scholar 

  38. Huang H, Zhu JJ (2013) The electrochemical applications of Quantum dots. Analyst 138:5855

    Article  CAS  Google Scholar 

  39. Tang YJ, Zhang S, Wen Q, Huang H, Yang PH (2015) A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces. Analy Chim Acta 881:148

    Article  CAS  Google Scholar 

  40. Zhang X, Huang H, Yang T, Ye Y, Shan J, Yin Z, Luo L (2010) Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury. Injury 41:746

    Article  Google Scholar 

  41. Shan J, Fu J, Zhao Z, Kong X, Huang H, Luo L, Yin Z (2009) Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-κB and JNK/AP-1 activation, Int Immunopharmacol 9: 1042

  42. Seyer L, Greeley N, Foerster D, Strawser C, Gelbard S, Dong Y, Schadt K, Cotticelli MG, Brocht A, Farmer J, Wilson RB, Lynch DR (2014) Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand 132:7

    Article  Google Scholar 

  43. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  44. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew Chem 116:5941

    Article  Google Scholar 

  45. Zheng M, Huang X (2004) Nanoparticles comprising a mixed monolayer for specific bindings with biomolecules. J Am Chem Soc 126:12047

    Article  CAS  Google Scholar 

  46. Gui M, Bao L, Xia Y, Wei C, Zhang S, Zhu C (2011) Indication of intracellular physiological pH changes by l-cysteine-coated CdTe Quantum dots with an acute alteration in emission color. Biosens Bioelectron 30:324

    Article  CAS  Google Scholar 

  47. Plouffe BD, Murthy SK, Lewis LH (2015) Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Prog Phy 78:016601

    Article  Google Scholar 

  48. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, Quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293

    Article  CAS  Google Scholar 

  49. Zhao M, Wu X, Cai C (2009) Polyaniline nanofibers: synthesis, Characterization, and Application to Direct Electron Transfer of Glucose Oxidase. J Phys Chem C 113:4987

    Article  CAS  Google Scholar 

  50. Yue B, Ma Y, Tao H, Yu L, Jian G, Wang X, Lu Y, Hu Z (2008) CN x nanotubes as catalyst support to immobilize platinum nanoparticles formethanol oxidation. J Mater Chem 18:1747

    Article  CAS  Google Scholar 

  51. Jie GF, Pan HC, Zhu JJ, Chen HY (2009) CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 70:5574

    Google Scholar 

  52. Ana BGS, Martin MA, Maria IP, Sonia R (2007) Molecular mechanisms of (−)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line. J Agr Food Chem 55:2020

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (NO.21375048). The Major State Basic Research Development Program of China (973 Program) (No.2010CB833603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihui Yang.

Ethics declarations

The authors declare that they have no competing interests.

Eslectronic supplementary material

ESM 1

(DOC 4.34 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Tang, Y., Wen, Q. et al. Dynamic evaluation of cell-secreted interferon gamma in response to drug stimulation via a sensitive electro-chemiluminescence immunosensor based on a glassy carbon electrode modified with graphene oxide, polyaniline nanofibers, magnetic beads, and gold nanoparticles. Microchim Acta 183, 1739–1748 (2016). https://doi.org/10.1007/s00604-016-1804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1804-9

Keywords

Navigation