Skip to main content

Advertisement

Log in

Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report that copper nanoclusters (CuNCs) represent a viable fluorescent probe for ascorbic acid. The CuNCs were stabilized by tannic acid and characterized by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, time-correlated single photon counting and fluorescence spectroscopy. It is found that the fluorescence of CuNCs (at excitation/emission peaks of 355/430 nm) is quenched by ferric ion due to electron-transfer between CuNCs and Fe(III) ions. If ascorbic acid is added, Fe(III) is reduced to Fe(II) and quenching is suppressed. The process is completed within 5 min. Under optimal conditions, a linear relation exists between fluorescence recovery and the concentration of ascorbic acid in the 0.5 μM to 10 μM concentration range. The detection limit is 0.11 μM. The method was applied to the determination of ascorbic acid in (spiked) fruit and vegetables and gave recoveries ranging from 89 to 110 %.

The fluorescence of tannic acid stabilized copper nanoclusters (TA-CuNCs) is quenched by Fe3+. Upon addition of ascorbic acid (AA), the redox reaction between Fe3+ and ascorbic acid converts Fe3+ to Fe2+, and this results in a dramatic fluorescence enhancement of the probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cobley JN, McHardy H, Morton JP, Nikolaidis MG, Close GL (2015) Influence of vitamin C and vitamin E on redox signaling: implications for exercise adaptations. Free Radical Biol Med 84:65–76

    Article  CAS  Google Scholar 

  2. Hu G, Guo Y, Xue Q, Shao S (2010) A highly selective amperometric sensor for ascorbic acid based on mesopore-rich active carbon-modified pyrolytic graphite electrode. Electrochim Acta 55(8):2799–2804

    Article  CAS  Google Scholar 

  3. Stan M, Soran ML, Marutoiu C (2014) Extraction and HPLC determination of the ascorbic acid content of three indigenous spice plants. J Anal Chem 69(10):998–1002

    Article  CAS  Google Scholar 

  4. Zhou C, Li S, Zhu W, Pang H, Ma H (2013) A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim Acta 113:454–463

    Article  CAS  Google Scholar 

  5. Ortega Barrales P, Fernández de Córdova ML, Díaz AM (1998) Indirect determination of ascorbic acid by solid-phase spectrophotometry. Anal Chim Acta 360(1–3):143–152

    Article  CAS  Google Scholar 

  6. Liu Z, Wang Q, Mao L, Cai R (2000) Highly sensitive spectrofluorimetric determination of ascorbic acid based on its enhancement effect on a mimetic enzyme-catalyzed reaction. Anal Chim Acta 413(1–2):167–173

    Article  CAS  Google Scholar 

  7. Tan H, Wu J, Chen Y (2014) Terbium(III) based coordination polymer microparticles as a luminescent probe for ascorbic acid. Microchim Acta 181(11):1431–1437

    Article  CAS  Google Scholar 

  8. Mudabuka B, Ondigo D, Degni S, Vilakazi S, Torto N (2013) A colorimetric probe for ascorbic acid based on copper-gold nanoparticles in electrospun nylon. Microchim Acta 181(3):395–401

    Google Scholar 

  9. Sun C-L, Chang C-T, Lee H-H, Zhou J, Wang J, Sham T-K, Pong W-F (2011) Microwave-Assisted Synthesis of a Core–Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano 5(10):7788–7795

    Article  CAS  Google Scholar 

  10. Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 1768(8):1862–1885

    Article  CAS  Google Scholar 

  11. Zhong Y, Zhu J, Wang Q, He Y, Ge Y, Song C (2014) Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper(II) ion. Microchim Acta 182(5–6):909–915

    Google Scholar 

  12. Yan Y, Sun J, Zhang K, Zhu H, Yu H, Sun M, Huang D, Wang S (2015) Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid. Anal Chem 87(4):2087–2093

    Article  CAS  Google Scholar 

  13. Shi L, Li Y, Li X, Wen X, Zhang G, Yang J, Dong C, Shuang S (2015) Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining. Nanoscale 7(16):7394–7401

    Article  CAS  Google Scholar 

  14. Jiang Y, Han Q, Jin C, Zhang J, Wang B (2015) A fluorescence turn-off chemosensor based on N-doped carbon quantum dots for detection of Fe3+ in aqueous solution. Mater Lett 141:366–368

    Article  CAS  Google Scholar 

  15. Liu Z-C, Qi J-W, Hu C, Zhang L, Song W, Liang R-P, Qiu J-D (2015) Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Anal Chim Acta 895:95–103

    Article  CAS  Google Scholar 

  16. Zhang K, Yu T, Liu F, Sun M, Yu H, Liu B, Zhang Z, Jiang H, Wang S (2014) Selective fluorescence turn-on and ratiometric detection of organophosphate using dual-emitting Mn-doped ZnS nanocrystal probe. Anal Chem 86(23):11727–11733

    Article  CAS  Google Scholar 

  17. Choi S, Dickson RM, Yu J (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41(5):1867–1891

    Article  CAS  Google Scholar 

  18. Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136(5):933–940

    Article  CAS  Google Scholar 

  19. Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1):132–157

    Article  CAS  Google Scholar 

  20. Mu X, Qi L, Dong P, Qiao J, Hou J, Nie Z, Ma H (2013) Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens Bioelectron 49:249–255

    Article  CAS  Google Scholar 

  21. Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun.(9):1088–1090

  22. Tang Q, Yang T, Huang Y (2015) Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta 182(13):2337–2343

    Article  CAS  Google Scholar 

  23. Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83(24):9676–9680

    Article  CAS  Google Scholar 

  24. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5(24):13242–13247

    Article  CAS  Google Scholar 

  25. Ferreira DC, Giordano GF, Soares CC, de Oliveira JF, Mendes RK, Piazzetta MH, Gobbi AL, Cardoso MB (2015) Optical paper-based sensor for ascorbic acid quantification using silver nanoparticles. Talanta 141:188–194

    Article  CAS  Google Scholar 

  26. Cao H, Chen Z, Zheng H, Huang Y (2014) Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron 62:189–195

    Article  CAS  Google Scholar 

  27. Iijima M, Kamiya H (2009) Surface modification for improving the stability of nanoparticles in liquid media. KONA Powder Part J 27:119–129

    Article  CAS  Google Scholar 

  28. Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4):401–418

    Article  CAS  Google Scholar 

  29. Yi Z, Li X, Xu X, Luo B, Luo J, Wu W, Yi Y, Tang Y (2011) Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids Surface A 392(1):131–136

    Article  CAS  Google Scholar 

  30. Brege JJ, Hamilton CE, Crouse CA, Barron AR (2009) Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano Lett 9(6):2239–2242

    Article  CAS  Google Scholar 

  31. Mansour A N (1994) Copper Mg Kα XPS Spectra from the Physical Electronics Model 5400 Spectrometer. Surf. Sci. Spectra 3(3):202

  32. Wei W, Lu Y, Chen W, Chen S (2011) One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133(7):2060–2063

    Article  CAS  Google Scholar 

  33. Gong J, Lu X, An X (2015) Carbon dots as fluorescent off-on nanosensors for ascorbic acid detection. RSC Adv 5(11):8533–8536

    Article  CAS  Google Scholar 

  34. Li X-G, Liao Y, Huang M-R, Strong V, Kaner RB (2013) Ultra-sensitive chemosensors for Fe(iii) and explosives based on highly fluorescent oligofluoranthene. Chem Sci 4(5):1970–1978

    Article  CAS  Google Scholar 

  35. Florou AB, Prodromidis MI, Karayannis MI, Tzouwara-Karayanni SM (2000) Flow electrochemical determination of ascorbic acid in real samples using a glassy carbon electrode modified with a cellulose acetate film bearing 2,6-dichlorophenolindophenol. Anal Chim Acta 409(1–2):113–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Two-Way Support Programs of Sichuan Agricultural University (Project No.03570113), the Education Department of Sichuan Provincial, PR China (Grant Nos.13ZA0255, 16ZA0039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanbing Rao or Yanying Wang.

Ethics declarations

The author(s) declare that they have no competing interests

Additional information

The authors wish it to be known that, in their opinions, Hanbing Rao and Hongwei Ge should be regarded as joint First Authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, H., Ge, H., Lu, Z. et al. Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid. Microchim Acta 183, 1651–1657 (2016). https://doi.org/10.1007/s00604-016-1794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1794-7

Keywords

Navigation