Skip to main content
Log in

Calcein-functionalized Fe3O4@SiO2 nanoparticles as a reusable fluorescent nanoprobe for copper(II) ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Calcein was first covalently grafted onto the surface of magnetic silica nanoparticles to obtain a novel fluorescent nanoprobe for sensitive and selective determination of Cu(II) ion. The nanoparticles were synthesized in a two-step reaction under mild conditions and characterized using small-angle X-ray scattering, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The nanoprobe also displays good selectivity over other metal ions and is highly stable under conditions of high ionic strength. The response to Cu(II) ranges from 80 nM to 1.25 μM. The detection limit (LOD) is 43 nM which is lower than previously reported LODs. The probe can be regenerated by adding the complexing agent EDTA and also can be separated from a sample mixture by applying a magnetic field. We conclude that this method represents a new and convenient approach to the development of magnetic and reusable optical probes.

Calcein was first covalently grafted onto the surface of magnetic silica nanoparticles to obtain a novel fluorescent nanoprobe for sensitive and selective determination of Cu(II) ion. The nanoprobe displays good selectivity over other metal ions and is highly stable under conditions of high ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chan YH, Chen JX, Liu QS, Wark SE, Son DH, Batteas JD (2010) Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal Chem 82:3671–3678

    Article  CAS  Google Scholar 

  2. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797s–811s

    CAS  Google Scholar 

  3. Manu V, Haresh MM, Hari BC, Raksh JV (2009) Adsorption of Cu2+ on amino functionalized silica gel with different loading. Ind Eng Chem Res 48:8954–8960

    Article  CAS  Google Scholar 

  4. Royzen M, Dai ZH, Canary JW (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  CAS  Google Scholar 

  5. Fan JL, Zhan P, Hu MM, Sun W, Tang JZ, Wang JY, Sun SG, Song FL, Peng XJ (2013) A fluorescent ratiometric chemodosimeter for Cu2+ based on TBET and its application in living cells. Org Lett 15:492–495

    Article  CAS  Google Scholar 

  6. Zhao CC, Feng P, Cao J, Wang XZ, Yang Y, Zhang YL, Zhang JX, Zhang YF (2012) Borondipyrromethene-derived Cu2+ sensing chemodosimeter for fast and selective detection. Org Biomol Chem 10:3104–3109

    Article  CAS  Google Scholar 

  7. Yuan L, Lin WY, Chen B, Xie YA (2012) Development of FRET-based ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging. Org Lett 14:432–439

    Article  CAS  Google Scholar 

  8. Pourreza N, Hoveizavi R (2005) Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Anal Chim Acta 549:124–128

    Article  CAS  Google Scholar 

  9. Lin TW, Huang SD (2001) Direct and simultaneous determination of copper, chromium, aluminum, and manganese in urine with a multielement graphite furnace atomic absorption spectrometer. Anal Chem 73:4319–4325

    Article  CAS  Google Scholar 

  10. Becker JS, Matusch A, Depboylu C, Dobrowolska J, Zoriy MV (2007) Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (Slugs − Genus Arion) measured by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79:6074–6080

    Article  CAS  Google Scholar 

  11. Otero-Romani J, Moreda-Pineiro A, Bermejo-Barrera A, Bermejo-Barrera P (2005) Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination. Anal Chim Acta 536:213–218

    Article  CAS  Google Scholar 

  12. Liu Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68:25–30

    Article  CAS  Google Scholar 

  13. Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069

    Article  CAS  Google Scholar 

  14. Yazid SNAM, Chin SF, Pang SC, Ng SM (2013) Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta 180:137–143

    Article  Google Scholar 

  15. Naresh K, Bhalla V, Manoj K (2014) Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions. Analyst 139:543–558

    Article  Google Scholar 

  16. Ye JH, Xu J, Chen HC, Bai Y, Zhang WC, He WJ (2014) A highly sensitive and selective turn-on fluorescent chemodosimeter for Cu2+ based on BODIPY and its application in bioimaging. RSC Adv 4:6691–6695

    Article  CAS  Google Scholar 

  17. Sun L, Li YX, Sun MD, Wang HG, Xu SF, Zhang CQ, Yang QB (2011) Porphyrin-functionalized Fe3O4@SiO2 core/shell magnetic colorimetric material for detection, adsorption and removal of Hg2+ in aqueous solution. New J Chem 35:2697–2704

    Article  CAS  Google Scholar 

  18. Dong ZP, Tian X, Chen YZ, Guo YP, Ma JT (2013) Dansyl derivative functionalized Fe3O4@SiO2 fluorescent probe for detection and removal of Hg2+ in aqueous solution. RSC Adv 3:1082–1088

    Article  CAS  Google Scholar 

  19. Zong CH, Ai KL, Zhang G, Li HW, Lu LH (2011) Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. Anal Chem 83:3126–3132

    Article  CAS  Google Scholar 

  20. Wang ML, Meng GW, Huang Q, Qian YW (2012) Electrospun 1,4-DHAQ-doped cellulose nanofiber films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environ Sci Technol 46:367–373

    Article  CAS  Google Scholar 

  21. Zarabadi-Poor P, Badiei A, Yousefi AA, Barroso-Flores J (2013) Selective optical sensing of Hg(II) in aqueous media by H-Acid/SBA-15:a combined experimental and theoretical study. J Phys Chem C 117:9281–9289

    Article  CAS  Google Scholar 

  22. Lu DL, Lei JY, Tian ZD, Wang LZ, Zhang JL (2012) Cu2+ fluorescent sensor based on mesoporous silica nanosphere. Dyes Pigments 94:239–246

    Article  CAS  Google Scholar 

  23. Lee HU, Song YS, Park C, Kim SW (2012) Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G. Mater Res Bul 47:4101–4106

    Article  CAS  Google Scholar 

  24. Guo J, Wang NJ, Wu JJ, Ye QQ, Zhang C, Xing XH, Yuan JY (2014) Hybrid nanoparticles with CO2-responsive shells and fluorescence-labelled magnetic cores. J Mater Chem B 2:437–442

    Article  CAS  Google Scholar 

  25. Liu B, Zeng F, Wu S, Wang J, Tang F (2013) Ratiometric sensing of mercury(II) based on a FRET process on silica core-shell nanoparticles acting as vehicles. Microchim Acta 180:845–853

    Article  CAS  Google Scholar 

  26. Ai X, Ma Q, Su X (2013) Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchim Acta 180:269–277

    Article  CAS  Google Scholar 

  27. Liu JS, Zang LJ, Wang YR, Liu GN (2014) Preparation of acridine orange-doped silica nanoparticles for pH measurement. J Lumin 147:155–158

    Article  CAS  Google Scholar 

  28. Chang L, Wu T, Chen F (2012) Determination of L-cysteine base on the reversion of fluorescence quenching of calcein by copper(II) ion. Microchim Acta 177:295–300

    Article  CAS  Google Scholar 

  29. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580

    Article  CAS  Google Scholar 

  30. Wang SG, Zhang ZH, Liu B, Li JL (2013) Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal Sci Technol 3:2104–2112

    Article  CAS  Google Scholar 

  31. Lapresta-Fernández A, Doussineau T, Moro AJ, Dutz S, Steiniger F, Mohr GJ (2011) Magnetic core–shell fluorescent pH ratiometric nanosensor using a Stöber coating method. Anal Chim Acta 707:164–170

    Article  Google Scholar 

  32. Clara P, André PM, Pedro Q, Pedro TB, Eulália P, João AP, Cristina F (2010) Superparamagnetic γ-Fe2O3@SiO2nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Trans 39:2842–2854

    Article  Google Scholar 

  33. Rastogi SK, Pal P, Aston DE, Bitterwolf TE, Branen AL (2011) 8-Aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension. ACS Appl Mater Interfaces 3:1731–1739

    Article  CAS  Google Scholar 

  34. Cheng XJ, Li JQ, Li XH, Zhang DH, Zhang HJ, Zhang AQ, Huang H, Lian JS (2012) A highly sensitive sensor based on hollow particles for the detection, adsorption and removal of Hg2+ ion. J Mater Chem 22:24102–24108

    Article  CAS  Google Scholar 

  35. Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299

    Article  CAS  Google Scholar 

  36. Puangploya P, Smanmoob S, Surareungchaia W (2014) A new rhodamine derivative-based chemosensor for highly selectiveand sensitive determination of Cu2+. Sensors Actuators B 193:679–686

    Article  Google Scholar 

  37. Viswanathan K (2012) Utilizing a tripeptide conjugated fluorescent hybrid nanoparticles as a fluorescence sensor for the determination of copper ions. Sensors Actuators A 175:15–18

    Article  CAS  Google Scholar 

  38. Cano-Raya C, Fernández-Ramos MD, Capitán-Vallvey LF, Wolfbeis OS, Schaferling M (2005) Fluorescence quenching of the europium tetracycline hydrogen peroxide complex by copper(II) and other metal ions. Appl Spectrosc 59:1209–1216

    Article  CAS  Google Scholar 

  39. Leth S, Maltoni S, Simkus R, Mattiasson B, Corbisier P, Klimant I, Wolfbeis OS, Csoregi E (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14:35–42

    Article  CAS  Google Scholar 

  40. Feng L, Zhang Y, Wen LY, Shen Z, Guan YF (2011) Colorimetric determination of copper(II) ions by filtration on sol–gel membrane doped with diphenylcarbazide. Talanta 84:913–917

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21205002) and the Innovation Funds of Anhui Normal University (2014cxjj09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshui Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, G., Zang, L. et al. Calcein-functionalized Fe3O4@SiO2 nanoparticles as a reusable fluorescent nanoprobe for copper(II) ion. Microchim Acta 182, 547–555 (2015). https://doi.org/10.1007/s00604-014-1358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1358-7

Keywords

Navigation