Skip to main content
Log in

Magnetic Fe3O4@C nanoparticles modified with 1-(2-thiazolylazo)-2-naphthol as a novel solid-phase extraction sorbent for preconcentration of copper (II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a new magnetic nanosorbent for solid phase extraction of Cu(II) before its determination by flame atomic absorption spectrometry. The magnetic sorbent is composed of carbon-coated magnetite nanoparticles (Fe3O4@C) synthesized by a single-step solvothermal reaction and then loaded with the chelator 1-(2-thiazolylazo)-2-naphthol. It was used for the preconcentration of Cu(II) ions from water and food samples. The effects of pH value and volume of sample, of type and volume of eluent, and of interfering ions were investigated. Under the optimum conditions, the calibration graph is linear in the 4.0–400 μg L−1 concentration range, with a detection limit of 1.5 μg L−1. The method was validated by using a certified reference material (NIST 1566b; oyster tissue) and applied to the determination of trace copper in spiked water and food samples.

TAN-modified magnetic Fe3O4@C nanoparticles were synthesized and used as efficient nanosorbents for separation/preconcentration of copper ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Manahan SE (2008) Fundamentals of Environmental Chemistry. CRC Press, Florida

    Google Scholar 

  2. Camel V (2003) Solid phase extraction of trace elements. Spectrochim Acta B 58:1177–1233

    Article  Google Scholar 

  3. Šafaříková M, Šafařík I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194:108–112

    Article  Google Scholar 

  4. Taghizadeh M, Asgharinezhad AA, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A (2013) A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology. Microchim Acta 180:1073–1084

    Article  CAS  Google Scholar 

  5. Wang Y, Xie J, Wu Y, Hu X (2014) A magnetic metal-organic framework as a new sorbent for solid-phase extraction of copper(II), and its determination by electrothermal AAS. Microchim Acta. doi:10.1007/s00604-014-1183-z

    Google Scholar 

  6. Pyrzynska K (2007) Application of carbon sorbents for the concentration and separation of metal ions. Anal Sci 23:631

    Article  CAS  Google Scholar 

  7. Valcárcel M, Cárdenas S, Simonet BM, Moliner-Martínez Y, Lucena R (2008) Carbon nanostructures as sorbent materials in analytical processes. Trends Anal Chem 27:34–43

    Article  Google Scholar 

  8. Zhang B-T, Zheng X, Li H-F, Lin J-M (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17

    Article  CAS  Google Scholar 

  9. Biniak S, Pakuła M, Szymański GS, Światkowski A (1999) Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir 15:6117–6122

    Article  CAS  Google Scholar 

  10. Ranganathan K (2003) Adsorption of Hg(II) ions from aqueous chloride solutions using powdered activated carbons. Carbon 41:1087–1092

    Article  CAS  Google Scholar 

  11. Yue ZR, Jiang W, Wang L, Toghiani H, Gardner SD, Pittman CU Jr (1999) Adsorption of precious metal ions onto electrochemically oxidized carbon fibers. Carbon 37:1607–1618

    Article  CAS  Google Scholar 

  12. Jankowski K, Jackowska A, Łukasiak P (2005) Determination of precious metals in geological samples by continuous powder introduction microwave induced plasma atomic emission spectrometry after preconcentration on activated carbon. Anal Chim Acta 540:197–205

    Article  CAS  Google Scholar 

  13. Gao R, Hu Z, Chang X, He Q, Zhang L, Tu Z, Shi J (2009) Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples. J Hazard Mater 172:324–329

    Article  CAS  Google Scholar 

  14. Starvin AM, Rao TP (2004) Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant. J Hazard Mater 113:75–79

    Article  CAS  Google Scholar 

  15. Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  16. Liang P, Ding Q, Song F (2005) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28:2339–2343

    Article  CAS  Google Scholar 

  17. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466–471

    Article  CAS  Google Scholar 

  18. Soylak M, Ercan O (2009) Selective separation and preconcentration of copper (II) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes. J Hazard Mater 168:1527–1531

    Article  CAS  Google Scholar 

  19. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152:632–639

    Article  CAS  Google Scholar 

  20. Zhang S, Niu H, Hu Z, Cai Y, Shi Y (2010) Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1217:4757–4764

    Article  CAS  Google Scholar 

  21. Heidari H, Razmi H (2012) Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC–UV. Talanta 99:13–21

    Article  CAS  Google Scholar 

  22. Zhang Z, Kong J (2011) Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J Hazard Mater 193:325–329

    Article  CAS  Google Scholar 

  23. Geng Y, Ding M, Chen H, Li H-F, Lin J-M (2012) Preparation of hydrophilic carbon-functionalized magnetic microspheres coated with chitosan and application in solid-phase extraction of bisphenol a in aqueous samples. Talanta 89:189–194

    Article  Google Scholar 

  24. Meng J, Shi C, Wei B, Yu W, Deng C, Zhang X (2011) Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography–mass spectrometry. J Chromatogr A 1218:2841–2847

    Article  CAS  Google Scholar 

  25. Bystrzejewski M, Pyrzyńska K, Huczko A, Lange H (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47:1201–1204

    Article  CAS  Google Scholar 

  26. Pyrzyńska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloid Surface A 362:102–109

    Article  Google Scholar 

  27. Bystrzejewski M, Pyrzyńska K (2011) Kinetics of copper ions sorption onto activated carbon, carbon nanotubes and carbon-encapsulated magnetic nanoparticles. Colloid Surface A 377:402–408

    Article  CAS  Google Scholar 

  28. Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3O4 @C@Layered Double Hydroxide Composite for Magnetic Separation of Uranium. Ind Eng Chem Res 52:10152–10159

    Article  CAS  Google Scholar 

  29. Zheng J, Liu ZQ, Zhao XS, Liu M, Liu X, Chu W (2012) One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23:165601

    Article  CAS  Google Scholar 

  30. Waldron R (1955) Infrared Spectra of Ferrites. Phys Rev 99:1727–1735

    Article  CAS  Google Scholar 

  31. Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surface A 212:219–226

    Article  CAS  Google Scholar 

  32. Coughlin RW, Ezra FS (1968) Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ Sci Technol 2:291–297

    Article  CAS  Google Scholar 

  33. Mattson JA, Mark HB, Malbin MD, Weber WJ, Crittenden JC (1969) Surface chemistry of active carbon: Specific adsorption of phenols. J Colloid Interface Sci 31:116–130

    Article  CAS  Google Scholar 

  34. Lemos VA, Santos ES, Santos MS, Yamaki RT (2007) Thiazolylazo dyes and their application in analytical methods. Microchim Acta 158:189–204

    Article  CAS  Google Scholar 

  35. Kong L, Lu X, Bian X, Zhang W, Wang C (2011) Constructing carbon-coated Fe3O4 microspheres as antiacid and magnetic support for palladium Nanoparticles for catalytic applications. ACS Appl Mater Interfaces 3:35–42

    Article  CAS  Google Scholar 

  36. Manzoori JL, Amjadi M, Darvishnejad M (2012) Separation and preconcentration of trace quantities of copper ion using modified alumina nanoparticles, and its determination by flame atomic absorption spectrometry. Microchim Acta 176:437–443

    Article  CAS  Google Scholar 

  37. Xie F, Lin X, Wu X, Xie Z (2008) Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 74:836–843

    Article  CAS  Google Scholar 

  38. Ghaedi M, Shokrollahi A, Kianfar AH, Mirsadeghi AS, Pourfarokhi A, Soylak M (2008) The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1,3 propan diimine (BSPDI) loaded on activated carbon. J Hazard Mater 154:128–134

    Article  CAS  Google Scholar 

  39. Cui Y, Hu Z-J, Yang J-X, Gao H-W (2012) Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium. Microchim Acta 176:359–366

    Article  CAS  Google Scholar 

  40. Vellaichamy S, Palanivelu K (2011) Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture. J Hazard Mater 185:1131–1139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amjadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi, A., Amjadi, M. Magnetic Fe3O4@C nanoparticles modified with 1-(2-thiazolylazo)-2-naphthol as a novel solid-phase extraction sorbent for preconcentration of copper (II). Microchim Acta 182, 257–264 (2015). https://doi.org/10.1007/s00604-014-1327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1327-1

Keywords

Navigation