Skip to main content

Advertisement

Log in

Screen-printed electrodes for biosensing: a review (2008–2013)

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Screen-printing is one of the most promising approaches towards simple, rapid and inexpensive production of biosensors. Disposable biosensors based on screen printed electrodes (SPEs) including microelectrodes and modified electrodes have led to new possibilities in the detection and quantitation of biomolecules, pesticides, antigens, DNA, microorganisms and enzymes. SPE-based sensors are in tune with the growing need for performing rapid and accurate in-situ analyses and for the development of portable devices. This review (with 226 refs.) first gives an introduction into the topic and then is subdivided into sections (a) on DNA sensors (including methods for the detection of hybridization and damage), (b) on aptasensors (for thrombin, OTA, immunoglobulins and cancer biomarkers), (c) on immunosensors (for microorganisms, immunoglobulins, toxins, hormones, lactoferrin and biomarkers), (d) on enzymatic biosensors (for glucose, hydrogen peroxide, various pharmaceuticals, neurotransmitters, amino acids, NADH, enzyme based sensors).

This review first gives an introduction into the topic of screen-printed electrodes for biosensing and is subdivided into sections (a) on DNA sensors, (b) on aptasensors, (c) on immunosensors, (d) on enzymatic biosensors. It contains 226 references

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Del Carlo M, Di Marcello M, Perugini M et al (2008) Electrochemical DNA biosensor for polycyclic aromatic hydrocarbon detection. Microchim Acta 163:163–169

    Google Scholar 

  2. Lucarelli F, Authier L, Bagni G et al (2003) Graphene–PEDOT: PSS on screen printed carbon electrode for enzymatic biosensing. Anal Lett 36:1887–1901

    CAS  Google Scholar 

  3. Malhotra BD, Chaubey A (2003) Biosensors for clinical diagnostics industry. Sensors Actuators B Chem 91:117–127. doi:10.1016/S0925-4005(03)00075-3

    CAS  Google Scholar 

  4. Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2010) Screen-printed biosensors in microbiology; a review. Talanta 82:1629–1636

    CAS  Google Scholar 

  5. Wang J, Tian B, Nascimento B, Angnes L (1998) Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim Acta 43:3459–3465. doi:10.1016/S0013-4686(98)00092-9

    CAS  Google Scholar 

  6. Fanjul-Bolado P, Hernández-Santos D, Lamas-Ardisana PJ et al (2008) Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim Acta 53:3635–3642. doi:10.1016/j.electacta.2007.12.044

    CAS  Google Scholar 

  7. Kadara RO, Jenkinson N, Banks CE (2009) Screen printed recessed microelectrode arrays. Sensors Actuators B Chem 142:342–346. doi:10.1016/j.snb.2009.08.005

    CAS  Google Scholar 

  8. Bain CD, Troughton EB, Tao YT et al (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    CAS  Google Scholar 

  9. Serafín V, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2011) A novel hybrid platform for the preparation of disposable enzyme biosensors based on poly (3, 4-ethylenedioxythiophene) electrodeposition in an ionic liquid medium onto gold nanoparticles-modified screen-printed electrodes. J Electroanal Chem 656:152–158

    Google Scholar 

  10. Pereira SV, Bertolino FA, Fernández-Baldo MA et al (2011) A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. Analyst 136:4745–4751. doi:10.1039/c1an15569e

    CAS  Google Scholar 

  11. Loaiza ÓA, Campuzano S, Pedrero M, Pingaron JM (2008) Designs of enterobacteriaceae lac z gene DNA gold screen printed biosensors. Electroanalysis 20:1397–1405

    CAS  Google Scholar 

  12. Yean CY, Kamarudin B, Ozkan DA et al (2008) Enzyme-linked amperometric electrochemical genosensor assay for the detection of PCR amplicons on a streptavidin-treated screen-printed carbon electrode. Anal Chem 80:2774–2779

    CAS  Google Scholar 

  13. Honeychurch KC, Hart JP (2003) Screen-printed electrochemical sensors for monitoring metal pollutants. TrAC Trends Anal Chem 22:456–469

    CAS  Google Scholar 

  14. Martínez-Paredes G, González-García MB, Costa-García A (2010) Genosensor for detection of four pneumoniae bacteria using gold nanostructured screen-printed carbon electrodes as transducers. Sensors Actuators B Chem 149:329–335. doi:10.1016/j.snb.2010.06.064

    Google Scholar 

  15. Sheng-Zhen C, Qiang CAI, Fang-Yi P et al (2012) Screen-printed electrochemical biosensor for detection of DNA hybridization. Chin J Anal Chem 40:1194–1200. doi:10.1016/S1872-2040(11)60565-3

    Google Scholar 

  16. Rochelet-Dequaire M, Djellouli N, Limoges B, Brossier P (2009) Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays. Analyst 134:349–353

    CAS  Google Scholar 

  17. Dai L, Hai B, Van Hieu N, Vinh H (2011) Electrochemical detection of short HIV sequences on chitosan / Fe 3 O 4 nanoparticle based screen printed electrodes. Mater Sci Eng C 31:477–485. doi:10.1016/j.Msec.2010.11.007

    Google Scholar 

  18. Rochelet M, Vienney F, Solanas S et al (2013) An electrochemical DNA biosensor for the detection of CTX-M extended-spectrum β-lactamase-producing Escherichia coli in soil samples. J Microbiol Methods 92:153–156. doi:10.1016/j.mimet.2012.11.019

    CAS  Google Scholar 

  19. Erdem A, Congur G, Eksin E (2013) Multi channel screen printed array of electrodes for enzyme-linked voltammetric detection of MicroRNAs. Sensors Actuators B Chem. doi:10.1016/j.snb.2013.07.114

    Google Scholar 

  20. Moreno M, Rincon E, Pérez JM et al (2009) Selective immobilization of oligonucleotide-modified gold nanoparticles by electrodeposition on screen-printed electrodes. Biosens Bioelectron 25:778–783

    CAS  Google Scholar 

  21. Schüler T, Asmus T, Fritzsche W, Möller R (2009) Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA. Biosens Bioelectron 24:2077–2084

    Google Scholar 

  22. Kuralay F, Campuzano S, Haake DA, Wang J (2011) Highly sensitive disposable nucleic acid biosensors for direct bioelectronic detection in raw biological samples. Talanta 85:1330–1337. doi:10.1016/j.talanta.2011.06.012

    CAS  Google Scholar 

  23. Nascimento GA, Souza EVM, Campos-Ferreira DS et al (2012) Electrochemical DNA biosensor for bovine papillomavirus detection using polymeric film on screen-printed electrode. Biosens Bioelectron 38:61–66. doi:10.1016/j.bios.2012.04.052

    CAS  Google Scholar 

  24. Paniel N, Baudart J (2013) Colorimetric and electrochemical genosensors for the detection of Escherichia coli DNA without amplification in seawater. Talanta 115:133–142. doi:10.1016/j.talanta.2013.04.050

    CAS  Google Scholar 

  25. Bonanni A, Esplandiu MJ, Valle M (2009) Impedimetric genosensors employing COOH-modified carbon nanotube screen-printed electrodes. Biosens Bioelectron 24:2885–2891. doi:10.1016/j.bios.2009.02.023

    CAS  Google Scholar 

  26. Liu J, Yuan X, Gao Q et al (2012) Ultrasensitive DNA detection based on coulometric measurement of enzymatic silver deposition on gold nanoparticle-modified screen-printed carbon electrode. Sensors Actuators B Chem 162:384–390. doi:10.1016/j.snb.2011.12.109

    CAS  Google Scholar 

  27. Xiong L, Batchelor-McAuley C, Gonçalves LM et al (2011) The indirect electrochemical detection and quantification of DNA through its co-adsorption with anthraquinone monosulphonate on graphitic and multi-walled carbon nanotube screen printed electrodes. Biosens Bioelectron 26:4198–4203

    CAS  Google Scholar 

  28. Ren R, Leng C, Zhang S (2010) A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes. Biosens Bioelectron 25:2089–2094

    CAS  Google Scholar 

  29. Ping J, Ru S, Luo X et al (2011) Direct electrochemistry of double strand DNA on ionic liquid modified screen-printed graphite electrode. Electrochim Acta 56:4154–4158. doi:10.1016/j.electacta.2011.01.107

    CAS  Google Scholar 

  30. Hlavata L, Benikova K, Vyskocil V, Labuda J (2012) Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensor based on low molecular weight DNA and screen-printed carbon electrode. Electrochim Acta 71:134–139. doi:10.1016/j.electacta.2012.03.119

    CAS  Google Scholar 

  31. Galandová J, Ovádeková R, Ferancová A, Labuda J (2009) Disposable DNA biosensor with the carbon nanotubes-polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines. Anal Bioanal Chem 394:855–861

    Google Scholar 

  32. Labuda J, Ovádeková R, Galandová J (2009) DNA-based biosensor for the detection of strong damage to DNA by the quinazoline derivative as a potential anticancer agent. Microchim Acta 164(3/4):371–377. doi:10.1007/s00604-008-0068-4

    CAS  Google Scholar 

  33. Hianik T, Wang J (2009) Electrochemical aptasensors – recent achievements and perspectives. Electroanalysis 21:1223–1235. doi:10.1002/elan.200904566

    CAS  Google Scholar 

  34. Gorodetsky AA, Buzzeo MC, Barton JK (2008) DNA-mediated electrochemistry. Bioconjug Chem 19:2285–2296. doi:10.1021/bc8003149

    CAS  Google Scholar 

  35. González-Fernández E, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ (2013) Monovalent labeling system improves the sensitivity of aptamer-based inhibition assays for small molecule detection. Sensors Actuators B Chem 182:668–674. doi:10.1016/j.snb.2013.03.070

    Google Scholar 

  36. Deng C, Chen J, Nie L et al (2009) Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Anal Chem 81:9972–9978

    CAS  Google Scholar 

  37. Kang Y, Feng K-J, Chen J-W et al (2008) Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochem Amsterdam Netherlands 73:76–81. doi:10.1016/j.bioelechem.2008.04.024

    CAS  Google Scholar 

  38. Strehlitz B, Nikolaus N, Stoltenburg R (2008) Protein detection with aptamer biosensors. Sensors (Peterboroug) 8:4296–4307. doi:10.3390/s8074296

    CAS  Google Scholar 

  39. Kjällman THM, Peng H, Soeller C, Travas-Sejdic J (2008) Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal Chem 80:9460–9466

    Google Scholar 

  40. Cederquist KB, Stoermer Golightly R, Keating CD (2008) Molecular beacon-metal nanowire interface: effect of probe sequence and surface coverage on sensor performance. Langmuir Acs J Surfaces Colloids 24:9162–9171

    CAS  Google Scholar 

  41. Nguyen BH, Tran LD, Do QP et al (2013) Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mater Sci Eng C Mater Biol Appl 33:2229–2234. doi:10.1016/j.Msec.2013.01.044

    CAS  Google Scholar 

  42. Rohrbach F, Karadeniz H, Erdem A et al (2012) Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Anal Biochem 421:454–459. doi:10.1016/j.ab.2011.11.034

    CAS  Google Scholar 

  43. Misumi M, Tanaka N (1980) Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid. Biochem Biophys Res Commun 92:647–654. doi:10.1016/0006-291X(80)90382-4

    CAS  Google Scholar 

  44. Zhu Y, Chandra P, Song K-M et al (2012) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36:29–34. doi:10.1016/j.bios.2012.03.034

    CAS  Google Scholar 

  45. Li Y, Deng L, Deng C et al (2012) Simple and sensitive aptasensor based on quantum dot-coated silica nanospheres and the gold screen-printed electrode. Talanta 99:637–642. doi:10.1016/j.talanta.2012.06.054

    CAS  Google Scholar 

  46. Zhao J, Liu M, Zhang Y et al (2013) Apoferritin protein nanoparticles dually labeled with aptamer and horseradish peroxidase as a sensing probe for thrombin detection. Anal Chim Acta 759:53–60. doi:10.1016/j.aca.2012.10.041

    CAS  Google Scholar 

  47. De la Escosura-Muñiz A, Chunglok W, Surareungchai W, Merkoçi A (2013) Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens Bioelectron 40:24–31. doi:10.1016/j.bios.2012.05.021

    Google Scholar 

  48. Hayat A, Sassolas A, Marty J-L, Radi A-E (2013) Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta 103:14–19. doi:10.1016/j.talanta.2012.09.048

    CAS  Google Scholar 

  49. Hayat A, Andreescu S, Marty J-L (2013) Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: application to the label free detection of small size molecules. Biosens Bioelectron 45:168–173. doi:10.1016/j.bios.2013.01.059

    CAS  Google Scholar 

  50. Rhouati A, Hayat A, Hernandez DB et al (2013) Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. Sensors Actuators B Chem 176:1160–1166. doi:10.1016/j.snb.2012.09.111

    CAS  Google Scholar 

  51. Gould HJ, Sutton BJ, Beavil AJ et al (2003) The biology of Ige and the basis of allergic disease. Annu Rev Immunol 21:579–628. doi:10.1146/annurev.immunol.21.120601.141103

    CAS  Google Scholar 

  52. Lee C-Y, Wu K-Y, Su H-L et al (2013) Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron 39:133–138. doi:10.1016/j.bios.2012.07.009

    CAS  Google Scholar 

  53. Song W, Li H, Liu H et al (2013) Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E. Electrochem Commun 31:16–19. doi:10.1016/j.elecom.2013.02.001

    CAS  Google Scholar 

  54. Ding C, Ge Y, Zhang S (2010) Electrochemical and electrochemiluminescence determination of cancer cells based on aptamers and magnetic beads. Chemistry 16:10707–10714

    CAS  Google Scholar 

  55. Zhang M, Liu H, Chen L et al (2013) A disposable electrochemiluminescence device for ultrasensitive monitoring of K562 leukemia cells based on aptamers and ZnO@carbon quantum dots. Biosens Bioelectron 49:79–85. doi:10.1016/j.bios.2013.05.003

    Google Scholar 

  56. Florea A, Taleat Z, Cristea C et al (2013) Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes. Electrochem Commun 33:127–130. doi:10.1016/j.elecom.2013.05.008

    CAS  Google Scholar 

  57. Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Lett Nat 184:1648–1649

    CAS  Google Scholar 

  58. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    CAS  Google Scholar 

  59. Ge X, Zhang W, Lin Y, Du D (2013) Magnetic Fe3O4@TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase. Biosens Bioelectron 50:486–491. doi:10.1016/j.bios.2013.07.017

    CAS  Google Scholar 

  60. Silva BVM, Cavalcanti IT, Silva MMS, Dutra RF (2013) A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T. Talanta. doi:10.1016/j.talanta.2013.08.059

    Google Scholar 

  61. De Ávila BE-F, Escamilla-Gómez V, Campuzano S et al (2013) Disposable amperometric magnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum. Anal Chim Acta 784:18–24. doi:10.1016/j.aca.2013.04.039

    Google Scholar 

  62. Zhan P, Du X-W, Gan N et al (2013) Amperometric immunosensor for determination of clenbuterol based on enzyme-antibody coimmobilized ZrO2 nano probes as signal tag. Chin J Anal Chem 41:828–834. doi:10.1016/S1872-2040(13)60662-3

    CAS  Google Scholar 

  63. Regiart M, Fernández-Baldo MA, Spotorno VG et al (2013) Ultra sensitive microfluidic immunosensor for determination of clenbuterol in bovine hair samples using electrodeposited gold nanoparticles and magnetic micro particles as bio-affinity platform. Biosens Bioelectron 41:211–217. doi:10.1016/j.bios.2012.08.020

    CAS  Google Scholar 

  64. Zhang X, Wang H, Yang C et al (2013) Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosens Bioelectron 41:669–674. doi:10.1016/j.bios.2012.09.047

    CAS  Google Scholar 

  65. Afonso AS, Pérez-López B, Faria RC et al (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40:121–126. doi:10.1016/j.bios.2012.06.054

    CAS  Google Scholar 

  66. Dos Santos MB, Sporer C, Sanvicens N et al (2009) Detection of pathogenic bacteria by electrochemical impedance spectroscopy: influence of the immobilization strategies on the sensor performance. Procedia Chem 1:1291–1294. doi:10.1016/j.proche.2009.07.322

    Google Scholar 

  67. Lin Y, Chen S, Chuang Y et al (2008) Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157: H7. Biosens Bioelectron 23:1832–1837. doi:10.1016/j.bios.2008.02.030

    CAS  Google Scholar 

  68. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2009) Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation. Biosens Bioelectron 24:3365–3371. doi:10.1016/j.bios.2009.04.047

    Google Scholar 

  69. Gamella M, Campuzano S, Parrado C et al (2009) Microorganisms recognition and quantification by lectin adsorptive affinity impedance. Talanta 78:1303–1309

    CAS  Google Scholar 

  70. Viswanathan S, Rani C, Ho JA (2012) Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 94:315–319. doi:10.1016/j.talanta.2012.03.049

    CAS  Google Scholar 

  71. Dou W, Tang W, Zhao G (2013) A disposable electrochemical immunosensor arrays using 4-channel screen-printed carbon electrode for simultaneous detection of Escherichia coli O157:H7 and Enterobacter sakazakii. Electrochim Acta 97:79–85. doi:10.1016/j.electacta.2013.02.136

    CAS  Google Scholar 

  72. Wong DW, Camirand WM, Pavlath AE (1996) Structures and functionalities of milk proteins. Crit Rev Food Sci Nutr 36:807–844

    CAS  Google Scholar 

  73. Volpe G, Sozzo U, Piermarini S et al (2012) Towards the development of a single-step immunosensor based on an electrochemical screen-printed electrode strip coupled with immunomagnetic beads. Anal Bioanal Chem. doi:10.1007/s00216-012-6141-1

    Google Scholar 

  74. Tomassetti M, Martini E, Campanella L et al (2013) Comparison of three immunosensor methods (surface plasmon resonance, screen-printed and classical amperometric immunosensors) for immunoglobulin G determination in human serum and animal or powdered mil. J Pharm Biomed Anal 73:90–98. doi:10.1016/j.jpba.2012.03.020

    CAS  Google Scholar 

  75. Lai G, Zhang H, Yong J, Yu A (2013) In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay. Biosens Bioelectron 47:178–183. doi:10.1016/j.bios.2013.03.029

    CAS  Google Scholar 

  76. Hayat A, Barthelmebs L, Sassolas A, Marty J-L (2011) An electrochemical immunosensor based on covalent immobilization of okadaic acid onto screen printed carbon electrode via diazotization-coupling reaction. Talanta 85:513–518

    CAS  Google Scholar 

  77. Radi A, Munoz-Berbel X, Cortina-Puig M, Marty J (2009) An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochim Acta 54:2180–2184. doi:10.1016/j.electacta.2008.10.013

    CAS  Google Scholar 

  78. Perrotta PR, Arévalo FJ, Vettorazzi NR et al (2012) Development of a very sensitive electrochemical magneto immunosensor for the direct determination of ochratoxin A in red wine. Sensors Actuators B Chem 162:327–333. doi:10.1016/j.snb.2011.12.089

    CAS  Google Scholar 

  79. Vig A, Muñoz-Berbel X, Radoi A et al (2009) Characterization of the gold-catalyzed deposition of silver on graphite screen-printed electrodes and their application to the development of impedimetric immunosensors. Talanta 80:942–946

    CAS  Google Scholar 

  80. Hervás M, López MÁ, Escarpa A (2010) Simplified calibration and analysis on screen-printed disposable platforms for electrochemical magnetic bead-based inmunosensing of zearalenone in baby food samples. Biosens Bioelectron 25:1755–1760. doi:10.1016/j.bios.2009.12.031

    Google Scholar 

  81. Pemberton RM, Hart JP (2009) Preparation of screen-printed electrochemical immunosensors for estradiol, and their application in biological fluids. In: Rasooly A, Herold KE (eds) Biosens. Biodetection. Humana, Clift, pp 85–98

    Google Scholar 

  82. Eguílaz M, Moreno-Guzmán M, Campuzano S et al (2010) An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosens Bioelectron 26:517–522

    Google Scholar 

  83. Moreno-Guzmán M, Ojeda I, Villalonga R et al (2012) Ultrasensitive detection of adrenocorticotropin hormone (ACTH) using disposable phenylboronic-modified electrochemical immunosensors. Biosens Bioelectron 35:82–86. doi:10.1016/j.bios.2012.02.015

    Google Scholar 

  84. Birgens HS (1985) Lactoferrin in plasma measured by an ELISA technique: evidence that plasma lactoferrin is an indicator of neutrophil turnover and bone marrow activity in acute leukaemia. Scand J Haematol 34:326–331. doi:10.1111/j.1600-0609.1985.tb00757.x

    CAS  Google Scholar 

  85. Campanella L, Martini E, Pintore M, Tomassetti M (2009) Determination of lactoferrin and immunoglobulin G in animal milks by New immunosensors. Sensors (Peterboroug) 9:2202–2221. doi:10.3390/s90302202

    CAS  Google Scholar 

  86. Tomassetti M, Martini E, Campanella L et al (2013) Lactoferrin determination using flow or batch immunosensor surface plasmon resonance: comparison with amperometric and screen-printed immunosensor methods. Sensors Actuators B Chem 179:215–225. doi:10.1016/j.snb.2012.09.096

    CAS  Google Scholar 

  87. Chen H, Jiang C, Yu C et al (2009) Protein chips and nanomaterials for application in tumor marker immunoassays. Biosens Bioelectron 24:3399–3411. doi:10.1016/j.bios.2009.03.020

    CAS  Google Scholar 

  88. D’Orazio P (2011) Biosensors in clinical chemistry — 2011 update. Clin Chim Acta 412:1749–1761. doi:10.1016/j.cca.2011.06.025

    Google Scholar 

  89. Aizawa M, Morioka A, Suzuki S, Nagamura Y (1979) Enzyme immunosenser: Ill. Amperometric determination of human cherienic gonadotropin by membrane-bound antibody. Anal Biochem 94:22–28. doi:10.1016/0003-2697(79)90784-X

    CAS  Google Scholar 

  90. Lin J, Ju H (2005) Electrochemical and chemiluminescent immunosensors for tumor markers. Biosens Bioelectron 20:1461–1470

    CAS  Google Scholar 

  91. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892

    CAS  Google Scholar 

  92. Wan Y, Deng W, Su Y et al (2011) Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens Bioelectron 30:93–99. doi:10.1016/j.bios.2011.08.033

    CAS  Google Scholar 

  93. Elshafey R, Tlili C, Abulrob A et al (2013) Label-free impedimetric immunosensor for ultrasensitive detection of cancer marker Murine double minute 2 in brain tissue. Biosens Bioelectron 39:220–225. doi:10.1016/j.bios.2012.07.049

    CAS  Google Scholar 

  94. Holford TRJ, Holmes JL, Collyer SD et al (2013) Label-free impedimetric immunosensors for psoriasin–increased reproducibility and sensitivity using an automated dispensing system. Biosens Bioelectron 44:198–203. doi:10.1016/j.bios.2012.11.042

    CAS  Google Scholar 

  95. Wu Y, Xue P, Hui KM, Kang Y (2013) A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron. doi:10.1016/j.bios.2013.08.039

    Google Scholar 

  96. Truong LTN, Chikae M, Ukita Y, Takamura Y (2011) Labelless impedance immunosensor based on polypyrrole – pyrolecarboxylic acid copolymer for hCG detection. Talanta 85:2576–2580. doi:10.1016/j.talanta.2011.08.018

    CAS  Google Scholar 

  97. Yan M, Zang D, Ge S et al (2012) A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosens Bioelectron 38:355–361. doi:10.1016/j.bios.2012.06.019

    CAS  Google Scholar 

  98. Escamilla-Gómez V, Hernández-Santos D, González-García MB et al (2009) Simultaneous detection of free and total prostate specific antigen on a screen-printed electrochemical dual sensor. Biosens Bioelectron 24:2678–2683

    Google Scholar 

  99. Lin C-C, Chen L-C, Huang C-H et al (2008) Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection. J Electroanal Chem 619–620:39–45. doi:10.1016/j.jelechem.2008.03.014

    Google Scholar 

  100. Faraggi D, Kramar A (2000) Methodological issues associated with tumor marker development: biostatistical aspects. Urol Oncol Semin Orig Investig 5:211–213. doi:10.1016/S1078-1439(00)00075-2

    Google Scholar 

  101. Ho JA, Lin Y-C, Wang L-S et al (2009) Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal Chem 81:1340–1346. doi:10.1021/ac801832h

    CAS  Google Scholar 

  102. Viswanathan S, Rani C, Vijay Anand A, Ho J-AA (2009) Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens Bioelectron 24:1984–1989

    CAS  Google Scholar 

  103. Lai G, Wu J, Ju H, Yan F (2011) Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv Funct Mater 21:2938–2943. doi:10.1002/adfm.201100396

    CAS  Google Scholar 

  104. Taleat Z, Ravalli A, Mazloum-Ardakani M, Marrazza G (2013) CA 125 immunosensor based on poly-anthranilic acid modified screen-printed electrodes. Electroanalysis 25:269–277. doi:10.1002/elan.201200425

    CAS  Google Scholar 

  105. Kumar D, Prasad BB (2012) Multiwalled carbon nanotubes embedded molecularly imprinted polymer-modified screen printed carbon electrode for the quantitative analysis of C-reactive protein. Sensors Actuators B Chem 171–172:1141–1150. doi:10.1016/j.snb.2012.06.053

    Google Scholar 

  106. Esteban-Fernández de Ávila B, Escamilla-Gómez V, Campuzano S et al (2013) Ultrasensitive amperometric magnetoimmunosensor for human C-reactive protein quantification in serum. Sensors Actuators B Chem 188:212–220. doi:10.1016/j.snb.2013.07.026

    Google Scholar 

  107. Hasanzadeh M, Shadjou N, Eskandani M et al (2013) Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction. TrAC Trends Anal Chem 49:20–30. doi:10.1016/j.trac.2013.04.009

    CAS  Google Scholar 

  108. Silva BVM, Cavalcanti IT, Mattos AB et al (2010) Disposable immunosensor for human cardiac troponin T based on streptavidin-microsphere modified screen-printed electrode. Biosens Bioelectron 26:1062–1067. doi:10.1016/j.bios.2010.08.051

    CAS  Google Scholar 

  109. Bhalla V, Carrara S, Sharma P et al (2012) Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I. Sensors Actuators B Chem 161:761–768. doi:10.1016/j.snb.2011.11.029

    CAS  Google Scholar 

  110. Moreira FTC, Dutra RAF (2012) Surface imprinting approach on screen printed electrodes coated with carboxylated PVC for myoglobin detection with electrochemical transduction. Procedia Eng 47:865–868. doi:10.1016/j.proeng.2012.09.284

    CAS  Google Scholar 

  111. Moreira FTC, Dutra RAF, Noronha JPC et al (2013) Novel biosensing device for point-of-care applications with plastic antibodies grown on Au-screen printed electrodes. Sensors Actuators B Chem 182:733–740. doi:10.1016/j.snb.2013.03.099

    CAS  Google Scholar 

  112. Moreira FTC, Dutra RAF, Noronha JPC, Sales MGF (2013) Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochim Acta 107:481–487. doi:10.1016/j.electacta.2013.06.061

    CAS  Google Scholar 

  113. Moreira FTC, Sharma S, Dutra RAF et al (2013) Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to myoglobin detection. Biosens Bioelectron 45:237–244. doi:10.1016/j.bios.2013.02.012

    CAS  Google Scholar 

  114. Gamella M, Campuzano S, Conzuelo F et al (2012) Amperometric magnetoimmunosensors for direct determination of D-dimer in human serum. Electroanalysis 24:2235–2243

    CAS  Google Scholar 

  115. Eissa S, Tlili C, L’Hocine L, Zourob M (2012) Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens Bioelectron 38(1):308–313

    CAS  Google Scholar 

  116. Kergaravat SV, Beltramino L, Garnero N et al (2013) Electrochemical magneto immunosensor for the detection of anti-TG2 antibody in celiac disease. Biosens Bioelectron 48:203–209. doi:10.1016/j.bios.2013.04.012

    CAS  Google Scholar 

  117. Sharma P, Tuteja SK, Bhalla V et al (2013) Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing. Biosens Bioelectron 39:99–105. doi:10.1016/j.bios.2012.06.061

    CAS  Google Scholar 

  118. Marquette CA, Blum LJ (2006) State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron 21:1424–1433

    CAS  Google Scholar 

  119. Willner I, Baron R, Willner B (2007) Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852. doi:10.1016/j.bios.2006.09.018

    CAS  Google Scholar 

  120. Mendes RK, Laschi S, Stach-Machado DR et al (2012) A disposable voltammetric immunosensor based on magnetic beads for early diagnosis of soybean rust. Sensors Actuators B Chem 166–167:135–140. doi:10.1016/j.snb.2012.02.004

    Google Scholar 

  121. Mendes RK, Carvalhal RF, Stach-Machado DR, Kubota LT (2009) Surface plasmon resonance immunosensor for early diagnosis of Asian rust on soybean leaves. Biosens Bioelectron 24:2483–2487

    CAS  Google Scholar 

  122. Wei W, Zong X, Wang X et al (2012) A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen / platinum doped silica sol – gel film modified screen-printed carbon electrode. Food Chem 135:888–892. doi:10.1016/j.foodchem.2012.06.037

    CAS  Google Scholar 

  123. Laschi S, Bulukin E, Palchetti I et al (2008) Disposable electrodes modified with multi-wall carbon nanotubes for biosensor applications. Irbm 29:202–207. doi:10.1016/j.rbmret.2007.11.002

    Google Scholar 

  124. Dias ACMS, Gomes-Filho LR, Silva MS, Dutra RF (2013) A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein. Biosens Bioelectron 44:216–221. doi:10.1016/j.bios.2012.12.033

    CAS  Google Scholar 

  125. Ning GAN, Nai-Xing LUO, Tian-Hua LI et al (2010) A non-enzyme amperometric immunosensor for rapid determination of human immunodeficiency virus p24 based on magnetism controlled carbon nanotubes modified printed electrode. Chin J Anal Chem 38:1556–1562. doi:10.1016/S1872-2040(09)60076-1

    Google Scholar 

  126. Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79:681–686. doi:10.1016/j.talanta.2009.04.059

    Google Scholar 

  127. Neves MMPS, González-García MB, Nouws HPA, Costa-García A (2011) Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosens Bioelectron 31:95–100. doi:10.1016/j.bios.2011.09.044

    Google Scholar 

  128. Wang J, Chen Q (1994) Enzyme microelectrode array strips for glucose and lactate. Anal Chem 66:1007–1011. doi:10.1021/ac00079a013

    CAS  Google Scholar 

  129. Sato N, Okuma H (2008) Development of single-wall carbon nanotubes modified screen-printed electrode using a ferrocene-modified cationic surfactant for amperometric glucose biosensor applications. Sensors Actuators B Chem 129:188–194. doi:10.1016/j.snb.2007.07.095

    CAS  Google Scholar 

  130. Liu J, Sun S, Liu C, Wei S (2011) An amperometric glucose biosensor based on a screen-printed electrode and Os-complex mediator for flow injection analysis. Measurement 44:1878–1883. doi:10.1016/j.measurement.2011.09.001

    Google Scholar 

  131. Pemberton RM, Xu J, Pittson R et al (2011) A screen-printed microband glucose biosensor system for real-time monitoring of toxicity in cell culture. Biosens Bioelectron 26:2448–2453. doi:10.1016/j.bios.2010.10.030

    CAS  Google Scholar 

  132. Gao Q, Guo Y, Liu J et al (2011) Short communication A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer. Bioelectrochemistry 81:109–113. doi:10.1016/j.bioelechem.2011.04.003

    CAS  Google Scholar 

  133. Gao Q, Guo Y, Zhang W et al (2011) An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode. Sensors Actuators B Chem 153:219–225. doi:10.1016/j.snb.2010.10.034

    CAS  Google Scholar 

  134. Laschi S, Bulukin E, Palchetti I et al (2008) Disposable electrodes modified with multi-wall carbon nanotubes for biosensor applications Électrodes jetables modifiées avec nanotubes de carbone pour le développement de biocapteurs. IRBM 29:202–207. doi:10.1016/j.rbmret.2007.11.002

    Google Scholar 

  135. Niu X, Chen C, Zhao H et al (2012) Novel snowflake-like Pt – Pd bimetallic clusters on screen-printed gold nanofilm electrode for H 2 O 2 and glucose sensing. Biosens Bioelectron 36:262–266. doi:10.1016/j.bios.2012.03.030

    CAS  Google Scholar 

  136. Pchelintsev NA, Vakurov A, Millner PA (2009) Simultaneous deposition of Prussian blue and creation of an electrostatic surface for rapid biosensor construction. Sensors Actuators B Chem 138:461–466. doi:10.1016/j.snb.2009.02.039

    CAS  Google Scholar 

  137. Chen P, Peng Y, Hao Y et al (2013) A high selective disposable biosensor based on screen-printed technique with two working electrodes for eliminating interference signals. Sensors Actuators B Chem 183:589–593. doi:10.1016/j.snb.2013.04.039

    CAS  Google Scholar 

  138. Piano M, Serban S, Biddle N et al (2010) A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola ’ s Blue – Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose. Anal Biochem 396:269–274. doi:10.1016/j.ab.2009.09.028

    CAS  Google Scholar 

  139. Nadeem M, Safina G, Ludwig R, Gorton L (2012) Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions. Anal Biochem 425:36–42. doi:10.1016/j.ab.2012.02.026

    Google Scholar 

  140. Zuo S, Teng Y, Yuan H, Lan M (2008) Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol – gel/polyvinyl alcohol hybrid film. Sensors Actuators B Chem 133:555–560. doi:10.1016/j.snb.2008.03.024

    CAS  Google Scholar 

  141. Yang T-H, Hung C-L, Ke J-H, Zen J-M (2008) An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase. Electrochem Commun 10:1094–1097. doi:10.1016/j.elecom.2008.05.020

    CAS  Google Scholar 

  142. Wisitsoraat A, Pakapongpan S, Sriprachuabwong C et al (2013) Graphene–PEDOT:PSS on screen printed carbon electrode for enzymatic biosensing. J Electroanal Chem 704:208–213. doi:10.1016/j.jelechem.2013.07.012

    CAS  Google Scholar 

  143. Wang L, Wang E (2004) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem commun 6:225–229. doi:10.1016/j.elecom.2003.12.004

    CAS  Google Scholar 

  144. Ping J, Wang Y, Fan K et al (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204–209

    CAS  Google Scholar 

  145. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Polymeric luminol on pre-treated screen-printed electrodes for the design of performant reagentless (bio) sensors. Sensors Actuators B Chem 139:214–221. doi:10.1016/j.snb.2009.01.020

    CAS  Google Scholar 

  146. Teng YJ, Zuo SH, Lan MB (2009) Direct electron transfer of Horseradish peroxidase on porous structure of screen-printed electrode. Biosens Bioelectron 24:1353–1357

    CAS  Google Scholar 

  147. Teng Y, Wu X, Zhou Q et al (2009) Direct electron transfer of myoglobin in mesoporous silica KIT-6 modified on screen-printed electrode. Sensors Actuators B Chem 142:267–272. doi:10.1016/j.snb.2009.08.013

    CAS  Google Scholar 

  148. Xin Y, Fu-Bing X, Hong-Wei L et al (2013) A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode. Electrochim Acta 109:750–755. doi:10.1016/j.electacta.2013.08.011

    CAS  Google Scholar 

  149. Asturias-Arribas L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2013) Screen-printed biosensor based on the inhibition of the acetylcholinesterase activity for the determination of codeine. Talanta 111:8–12. doi:10.1016/j.talanta.2013.03.042

    CAS  Google Scholar 

  150. Honeychurch KC, Crew A, Northall H et al (2013) The redox behaviour of diazepam (Valium®) using a disposable screen-printed sensor and its determination in drinks using a novel adsorptive stripping voltammetric assay. Talanta 116:300–307. doi:10.1016/j.talanta.2013.05.017

    CAS  Google Scholar 

  151. Alonso-Lomillo MA, Domínguez-Renedo O, Matos P, Arcos-Martínez MJ (2009) Electrochemical determination of levetiracetam by screen-printed based biosensors. Bioelectrochemistry 74:306–309. doi:10.1016/j.bioelechem.2008.11.003

    CAS  Google Scholar 

  152. Bergamini MF, Santos DP, Valnice M, Zanoni B (2013) Electrochemical behavior and voltammetric determination of pyrazinamide using a poly-histidine modified electrode. J Electroanal Chem 690:47–52. doi:10.1016/j.jelechem.2012.11.032

    CAS  Google Scholar 

  153. Bergamini MF, Santos DP, Zanoni MVB (2010) Determination of isoniazid in human urine using screen-printed carbon electrode modified with poly-L-histidine. Bioelectrochem Amsterdam Netherlands 77:133–138

    CAS  Google Scholar 

  154. Roberto P, Oliveira D, Mohallem M et al (2012) Flow injection amperometric determination of isoniazid using a screen-printed carbon electrode modified with silver hexacyanoferrates nanoparticles. Sensors Actuators B Chem 171–172:795–802. doi:10.1016/j.snb.2012.05.073

    Google Scholar 

  155. Caetano FR, Gevaerd A, Castro EG et al (2012) Electroanalytical application of a screen-printed electrode modified by dodecanethiol-stabilized platinum nanoparticles for dapsone determination. Electrochim Acta 66:265–270. doi:10.1016/j.electacta.2012.01.100

    CAS  Google Scholar 

  156. Wu S-H, Nie F-H, Chen Q-Z, Sun J-J (2011) Highly sensitive detection of silybin based on adsorptive stripping analysis at single-sided heated screen-printed carbon electrodes modified with multi-walled carbon nanotubes with direct current heating. Anal Chim Acta 687:43–49

    CAS  Google Scholar 

  157. Radi A, Khafagy A, El-shobaky A, El-Mezayen H (2013) Anodic Voltammetric determination of gemifloxacin using screen-printed carbon electrode. J Pharm Anal 1–5. doi:10.1016/j.jpha.2012.10.005

  158. Zhang H, Liu G, Chai C (2012) A novel amperometric sensor based on screen-printed electrode modified with multi-walled carbon nanotubes and molecularly imprinted membrane for rapid determination of ractopamine in pig urine. Sensors Actuators B Chem 168:103–110. doi:10.1016/j.snb.2012.03.032

    CAS  Google Scholar 

  159. Bodoki E, Laschi S, Palchetti I, Mascini M (2008) Electrochemical behavior of colchicine using graphite-based screen-printed electrodes. Talanta 76:288–294. doi:10.1016/j.talanta.2008.02.048

    CAS  Google Scholar 

  160. Komorsky-Lovrić Š, Galić I, Penovski R (1999) Voltammetric determination of cocaine microparticles. Electroanalysis 11:120–123. doi:10.1002/(SICI)1521-4109(199902)11:2<120::AID-ELAN120>3.0.CO;2-R

    Google Scholar 

  161. Asturias-Arribas L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2011) CYP450 biosensors based on screen-printed carbon electrodes for the determination of cocaine. Anal Chim Acta 685:15–20. doi:10.1016/j.aca.2010.11.006

    CAS  Google Scholar 

  162. Asturias-Arribas L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2013) Electrochemical determination of cocaine using screen-printed cytochrome P450 2B4 based biosensors. Talanta 105:131–134. doi:10.1016/j.talanta.2012.11.078

    CAS  Google Scholar 

  163. Rafiee B, Fakhari AR (2013) Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode. Biosens Bioelectron 46:130–135. doi:10.1016/j.bios.2013.01.037

    CAS  Google Scholar 

  164. Arvinte A, Westermann AC, Sesay AM, Virtanen V (2010) Electrocatalytic oxidation and determination of insulin at CNT-nickel–cobalt oxide modified electrode. Sensors Actuators B Chem 150:756–763. doi:10.1016/j.snb.2010.08.004

    CAS  Google Scholar 

  165. Mazloum-Ardakani M, Beitollahi H, Amini MK et al (2011) A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan. Biosens Bioelectron 26:2102–2106

    CAS  Google Scholar 

  166. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D 28K immunohistochemistry. Brain 122:1421–1436

    Google Scholar 

  167. Yixin S, Fu Wang S (2006) Simultaneous determination of dopamine and ascorbic acid at a triazole self-assembled monolayer-modified gold electrode. Microchim Acta 154:115–121. doi:10.1007/s00604-006-0485-1

    Google Scholar 

  168. Mazloum-Ardakani M, Taleat Z, Beitollahi H, Naeimi H (2010) Electrocatalytic oxidation of dopamine on 2,2′-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone modified carbon paste electrode. Anal Methods 2:149. doi:10.1039/b9ay00217k

    CAS  Google Scholar 

  169. Mazloum-Ardakani M, Beitollahi H, Amini MK et al (2010) New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO(2) nanoparticles-modified carbon paste electrode. Sensors Actuators B Chem 151:243–249. doi:10.1016/j.snb.2010.09.011

    CAS  Google Scholar 

  170. Li Y, Zhang L, Li M et al (2012) A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs- doped screen-printed electrode. Chem Cent J 6:103, 2–8

    CAS  Google Scholar 

  171. Wu Y, Dou Z, Liu Y et al (2013) Dopamine sensor development based on the modification of glassy carbon electrode with [small beta]-cyclodextrin-poly(N-isopropylacrylamide). RSC Adv 3:12726–12734. doi:10.1039/C3RA40231B

    CAS  Google Scholar 

  172. Moreno M, Sánchez A, Bermejo E et al (2010) Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta 80:2149–2156. doi:10.1016/j.talanta.2009.11.022

    CAS  Google Scholar 

  173. Alarcón-Ángeles G, Guix M, Silva WC et al (2010) Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosens Bioelectron 26:1768–1773

    Google Scholar 

  174. Chang J, Wei G, Zen J (2011) Screen-printed ionic liquid / preanodized carbon electrode: effective detection of dopamine in the presence of high concentration of ascorbic acidn of ascorbic acid. Electrochem Commun 13:174–177. doi:10.1016/j.elecom.2010.12.006

    CAS  Google Scholar 

  175. Dai M, Haselwood B, Vogt BD, La Belle JT (2013) Amperometric sensing of norepinephrine at picomolar concentrations using screen printed, high surface area mesoporous carbon. Anal Chim Acta 788:32–38. doi:10.1016/j.aca.2013.06.019

    CAS  Google Scholar 

  176. Liu M, Xiang J, Zhou J, Ding H (2010) A disposable amperometric sensor for rapid detection of serotonin in the blood and brain of the depressed mice based on nafion membrane-coated colloidal gold screen-printed electrode. J Electroanal Chem 640:1–7. doi:10.1016/j.jelechem.2009.12.020

    CAS  Google Scholar 

  177. Ambrosi A, Morrin A, Smyth MR, Killard AJ (2008) The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal Chim Acta 609:37–43

    CAS  Google Scholar 

  178. Ping J, Wu J, Ying Y (2010) Development of an ionic liquid modified screen-printed graphite electrode and its sensing in determination of dopamine. Electrochem Commun 12:1738–1741. doi:10.1016/j.elecom.2010.10.010

    CAS  Google Scholar 

  179. Salimi AS, Alizadeh V, Compton RGC (2005) Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film. Anal Sci 21:1275–1280

    CAS  Google Scholar 

  180. Ping J, Wu J, Wang Y, Ying Y (2012) Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron 34:70–76. doi:10.1016/j.bios.2012.01.016

    CAS  Google Scholar 

  181. Huang S-H, Liao H-H, Chen D-H (2010) Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosens Bioelectron 25:2351–2355

    CAS  Google Scholar 

  182. Li Y, Umasankar Y, Chen S-M (2009) Multiwalled carbon nanotubes with poly(NDGAChi) biocomposite film for the electrocatalysis of epinephrine and norepinephrine. Anal Biochem 388:288–295. doi:10.1016/j.ab.2009.02.032

    CAS  Google Scholar 

  183. Piermarini S, Migliorelli D, Volpe G et al (2012) Uricase biosensor based on a screen-printed electrode modified with Prussian blue for detection of uric acid in human blood serum. Sensors Actuators B Chem. doi:10.1016/j.snb.2012.10.090

    Google Scholar 

  184. Kanyong P, Pemberton RM, Jackson SK, Hart JP (2012) Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. Anal Biochem 428:39–43. doi:10.1016/j.ab.2012.05.027

    CAS  Google Scholar 

  185. Ke JH, Tseng HJ, Hsu CT et al (2008) Flow injection analysis of ascorbic acid based on its thermoelectrochemistry at disposable screen-printed carbon electrodes. Sensors Actuators B Chem 130:614–619

    CAS  Google Scholar 

  186. Kit-Anan W, Olarnwanich A, Sriprachuabwong C, Karuwan C (2012) Disposable paper-based electrochemical sensor utilizing inkjet-printed Polyaniline modified screen-printed carbon electrode for Ascorbic acid detection. J Electroanal Chem 685:72–78. doi:10.1016/j.jelechem.2012.08.039

    CAS  Google Scholar 

  187. Kataoka H, Matsumura S, Makita M (1997) Determination of amino acids in biological fluids by capillary gas chromatography with nitrogen-phosphorus selective detection. J Pharm Biomed Anal 15:1271–1279. doi:10.1016/S0731-7085(96)02002-X

    CAS  Google Scholar 

  188. Lee M-Y, Peng J, Wu C-C (2013) Geometric effect of copper nanoparticles electrodeposited on screen-printed carbon electrodes on the detection of α-, β- and γ-amino acids. Sensors Actuators B Chem 186:270–277. doi:10.1016/j.snb.2013.06.019

    CAS  Google Scholar 

  189. Sehlotho N, Griveau S, Ruille N et al (2008) Electro-catalyzed oxidation of reduced glutathione and 2-mercaptoethanol by cobalt phthalocyanine-containing screen printed graphite electrodes. Mater Sci Eng C 28:606–612. doi:10.1016/j.Msec.2007.10.054

    CAS  Google Scholar 

  190. Su W-Y, Cheng S-H (2008) Electrocatalysis and sensitive determination of cysteine at poly(3,4-ethylenedioxythiophene)-modified screen-printed electrodes. Electrochem commun 10:899–902. doi:10.1016/j.elecom.2008.04.013

    CAS  Google Scholar 

  191. Liao C-Y, Zen J-M (2008) Development of a method for total plasma thiols measurement using a disposable screen-printed carbon electrode coupled with a MnO2 reactor. Sensors Actuators B Chem 129:896–902. doi:10.1016/j.snb.2007.10.004

    CAS  Google Scholar 

  192. Gómez-Mingot M, Iniesta J, Montiel V et al (2011) Direct oxidation of methionine at screen printed graphite macroelectrodes: towards rapid sensing platforms. Sensors Actuators B Chem 155:831–836. doi:10.1016/j.snb.2011.01.056

    Google Scholar 

  193. Gurban A, Noguer T, Bala C, Rotariu L (2008) Improvement of NADH detection using Prussian blue modified screen-printed electrodes and different strategies of immobilisation. Sens Actuators B 128:536–544. doi:10.1016/j.snb.2007.07.067

    CAS  Google Scholar 

  194. Doumèche B, Blum LJ (2010) NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt. Electrochem Commun 12:1398–1402. doi:10.1016/j.elecom.2010.07.031

    Google Scholar 

  195. Serafín V, Agüí L, Pingarrón JM (2011) A novel hybrid platform for the preparation of disposable enzyme biosensors based on poly (3, 4-ethylenedioxythiophene ) electrodeposition in an ionic liquid medium onto gold nanoparticles-modified screen-printed electrodes. J Electroanal Chem 656:152–158. doi:10.1016/j.jelechem.2010.11.038

    Google Scholar 

  196. García G, Reviejo AJ, Biscay J et al (2012) Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode. Talanta 88:432–438. doi:10.1016/j.talanta.2011.11.013

    Google Scholar 

  197. Kanyong P, Pemberton RM, Jackson SK, Hart JP (2013) Development of an amperometric screen-printed galactose biosensor for serum analysis. Anal Biochem 435:114–119. doi:10.1016/j.ab.2013.01.006

    CAS  Google Scholar 

  198. Trashin SA, Haltrich D, Ludwig R et al (2009) Improvement of direct bioelectrocatalysis by cellobiose dehydrogenase on screen printed graphite electrodes using polyaniline modification. Bioelectrochem Amsterdam Netherlands 76:87–92

    CAS  Google Scholar 

  199. Safina G, Ludwig R, Gorton L (2010) A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes. Electrochim Acta 55:7690–7695. doi:10.1016/j.electacta.2009.10.052

    CAS  Google Scholar 

  200. Rawson FJ, Purcell WM, Xu J et al (2009) A microband lactate biosensor fabricated using a water-based screen-printed carbon ink. Talanta 77:1149–1154. doi:10.1016/j.talanta.2008.08.020

    CAS  Google Scholar 

  201. Hirst NA, Hazelwood LD, Jayne DG, Millner PA (2013) An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly(ethyleneimine) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis. Sensors Actuators B Chem 186:674–680. doi:10.1016/j.snb.2013.06.090

    CAS  Google Scholar 

  202. Alonso-Lomillo MA, Domínguez-Renedo O, Román LT, Arcos-Martínez MJ (2011) Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A. Anal Chim Acta 688:49–53. doi:10.1016/j.aca.2011.01.003

    CAS  Google Scholar 

  203. Alonso-Lomillo MA, Domínguez-Renedo O (2010) Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A. Biosens Bioelectron 25:1333–1337. doi:10.1016/j.bios.2009.10.024

    CAS  Google Scholar 

  204. Carrara S, Shumyantseva VV, Archakov AI, Samor B (2008) Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol, biosensors. Biosens Bioelectron 24:148–150

    CAS  Google Scholar 

  205. Zhen S, Wang Y, Liu C et al (2011) A novel microassay for measuring blood alcohol concentration using a disposable biosensor strip. Forensic Sci Int 207:177–182. doi:10.1016/j.forsciint.2010.10.002

    CAS  Google Scholar 

  206. Conzuelo F, Campuzano S, Gamella M et al (2013) Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens Bioelectron 50C:100–105. doi:10.1016/j.bios.2013.06.019

    Google Scholar 

  207. Phongphut A, Sriprachuabwong C, Wisitsoraat A, Tuantranont A (2013) A disposable amperometric biosensor based on inkjet-printed Au / PEDOT-PSS nanocomposite for triglyceride determination. Sensors Actuators B Chem 178:501–507. doi:10.1016/j.snb.2013.01.012

    CAS  Google Scholar 

  208. Calvo-Pérez A, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2013) Disposable amperometric biosensor for the determination of tyramine using plasma amino oxidase. Microchim Acta 180:253–259. doi:10.1007/s00604-012-0926-y

    Google Scholar 

  209. Antonelli ML, Arduini F, Laganà A et al (2009) Construction, assembling and application of a trehalase – GOD enzyme electrode, system. Biosens Bioelectron 24:1382–1388

    CAS  Google Scholar 

  210. Román LT (2013) Gluconic acid determination in wine by electrochemical biosensing. Sensors Actuators B Chem 176:858–862. doi:10.1016/j.snb.2012.10.053

    Google Scholar 

  211. Banerjee S, Sarkar P, Turner APF (2013) Amperometric biosensor based on Prussian Blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphate. Anal Biochem 439:194–200. doi:10.1016/j.ab.2013.04.025

    CAS  Google Scholar 

  212. Istamboulie G, Sikora T, Jubete E et al (2010) Screen-printed poly (3, 4-ethylenedioxythiophene) (PEDOT): a new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta 82:957–961. doi:10.1016/j.talanta.2010.05.070

    CAS  Google Scholar 

  213. Ben N, Bakas I, Istamboulié G et al (2013) Solegel immobilization of acetylcholinesterase for the determination of organophosphate pesticides in olive oil with biosensors. Food Control 30:657–661. doi:10.1016/j.foodcont.2012.09.005

    Google Scholar 

  214. Arduini F, Guidone S, Amine A et al (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors Actuators B Chem 179:201–208. doi:10.1016/j.snb.2012.10.016

    CAS  Google Scholar 

  215. Alonso-Lomillo MA, Yardimci C, Domínguez-Renedo O, Arcos-Martínez MJ (2009) CYP450 2B4 covalently attached to carbon and gold screen printed electrodes by diazonium salt and thiols monolayers. Anal Chim Acta 633:51–56. doi:10.1016/j.aca.2008.11.033

    CAS  Google Scholar 

  216. Gilbert L, Jenkins ATA, Browning S, Hart JP (2009) Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode. Anal Biochem 393:242–247. doi:10.1016/j.ab.2009.06.038

    CAS  Google Scholar 

  217. Gilbert L, Browning S, Jenkins ATA, Hart JP (2010) Studies towards an amperometric phosphate ion biosensor for urine and water, analysis. Microchim Acta 170(3–4):331–336

    CAS  Google Scholar 

  218. Gilbert L, Jenkins ATA, Browning S, Hart JP (2011) Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sensors Actuators B Chem 160:1322–1327

    CAS  Google Scholar 

  219. Mata D, Bejarano D, Botero ML et al (2010) Screen-printed integrated microsystem for the electrochemical detection of pathogens. Electrochim Acta 55:4261–4266. doi:10.1016/j.electacta.2009.03.001

    CAS  Google Scholar 

  220. Queirós RB, Guedes A, Marques PVS et al (2012) Recycling old screen-printed electrodes with newly designed plastic antibodies on the wall of carbon nanotubes as sensory element for in situ detection of bacterial toxins in water. Sensors Actuators B Chem. doi:10.1016/j.snb.2012.11.112

    Google Scholar 

  221. Miao P, Han K, Qi J et al (2013) Electrochemical investigation of endotoxin induced limulus amebocyte lysate gel-clot process. Electrochem Commun 26:29–32. doi:10.1016/j.elecom.2012.10.002

    CAS  Google Scholar 

  222. Dontsova EA, Zeifman YS, Budashov IA et al (2011) Screen-printed carbon electrode for choline based on MnO 2 nanoparticles and choline oxidase / polyelectrolyte layers. Sensors Actuators B Chem 159:261–270. doi:10.1016/j.snb.2011.07.001

    CAS  Google Scholar 

  223. Muñoz-Berbel X, Rouillon R, Calas-Blanchard C, Marty J (2009) Development of a cytochrome c-based screen-printed biosensor for the determination of the antioxidant capacity of orange juices. Bioelectrochemistry 76:76–80. doi:10.1016/j.bioelechem.2009.04.004

    Google Scholar 

  224. Pini R, Garabini A, Andrade DF et al (2013) A new voltammetric method for the simultaneous determination of the antioxidants TBHQ and BHA in biodiesel using multi-walled carbon nanotube screen-printed electrodes. Fuel 105:306–313. doi:10.1016/j.fuel.2012.06.062

    Google Scholar 

  225. Messina A, Bianchi G, Olsina RA et al (2009) Determination of arylsulphatase and phosphatase enzyme activities in soil using screen-printed electrodes modified with multi-walled carbon nanotubes. Soil Biol Biochem 41:2444–2452. doi:10.1016/j.soilbio.2009.08.024

    Google Scholar 

  226. Rodríguez-Méndez ML, Gay M, Apetrei C, De Saja JA (2009) Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes. Electrochim Acta 54:7033–7041. doi:10.1016/j.electacta.2009.07.024

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Yazd University Research Council, IUT Research Council and Excellence in Sensors for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mazloum-Ardakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taleat, Z., Khoshroo, A. & Mazloum-Ardakani, M. Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181, 865–891 (2014). https://doi.org/10.1007/s00604-014-1181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1181-1

Keywords

Navigation