Skip to main content
Log in

Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a nonenzymatic method for the determination of glucose using an electrode covered with graphene nanosheets (GNs) modified with Pt-Pd nanocubes (PtPdNCs). The latter were prepared on GNs by using N,N-dimethylformamide as a bifunctional solvent for the reduction of both metallic precursors and graphene oxide, and for confining the growth of PtPdNCs on the surface. The modified electrode displays strong and sensitive current response to the electrooxidation of glucose, notably at pH 7. The sensitivities increase in the order of Pt1Pd5NCs< Pt1Pd3NCs< Pt5Pd1NCs< Pt3Pd1NCs< Pt1Pd1NCs. At an applied potential of +0.25 V, the electrode responds linearly (R = 0.9987) to glucose in up to 24.5 mM concentration, with a sensitivity of 1.4 μA cm−2 M−1. The sensor is not poisoned by chloride, and not interfered by ascorbic acid, uric acid and p-acetamidophenol under normal physiological conditions. The modified electrode also displays a wide linear range, good stability and fast amperometric response, thereby indicating the potential of the bimetallic materials for nonenzymatic sensing of glucose.

nonenzymatic electrochemical method was developed for glucose determination using an electrode modified with PtPd nanocubes/graphene nanosheets (PtPdNCs/GNs). The new material shows a good performance in the sensing of glucose, thus is promising for the future development of nonenzymatic glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  2. Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186

    Article  CAS  Google Scholar 

  3. Zhu XH, Jiao QF, Zhang CY, Zuo XX, Xiao X, Liang Y, Nan JM (2013) Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene. Microchim Acta 180:477–483

    Article  CAS  Google Scholar 

  4. Luo J, Zhang HY, Jiang SS, Jiang JQ, Liu XY (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177:485–490

    Article  CAS  Google Scholar 

  5. Qiao NQ, Zheng ZB (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Microchim Acta 177:103–109

    Article  CAS  Google Scholar 

  6. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  7. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  8. Niu XH, Lan MB, Chen C, Zhao HL (2012) Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta 99:1062–1067

    Article  CAS  Google Scholar 

  9. Xiao F, Zhao F, Mei D, Mo Z, Zeng B (2009) Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens Bioelectron 24:3481–3486

    Article  CAS  Google Scholar 

  10. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    Article  CAS  Google Scholar 

  11. Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X (2011) Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136:4631–4640

    Article  CAS  Google Scholar 

  12. Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133:3693–3695

    Article  CAS  Google Scholar 

  13. Chen XM, Cai ZX, Huang ZY, Oyama M, Jiang YQ, Chen X (2013) Palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochim Acta 97:398–403

    Article  CAS  Google Scholar 

  14. Chen XM, Su BY, Wu GH, Yang CY, Zhuang ZX, Wang XR, Chen X (2012) Platinum nanoflowers supported on graphene oxide nanosheets: their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation. J Mater Chem 22:11284–11289

    Article  CAS  Google Scholar 

  15. Chen XM, Cai ZX, Huang ZY, Oyama M, Jiang YQ, Chen X (2013) Non-enzymatic oxalic acid sensor using platinum nanoparticles modified on graphene nanosheets. Nanoscale 5:5779–5783

    Article  CAS  Google Scholar 

  16. Cote LJ, Kim F, Huang JX (2009) Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    Article  CAS  Google Scholar 

  17. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) Electronic structures of Pt-Co and Pt-Ru alloys for Co-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J Phys Chem B 110(46):23489–23496

    Article  CAS  Google Scholar 

  18. Wang H, Xu CW, Cheng FL, Zhang M, Wang SY, Jiang SP (2008) Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochem Commun 10(10):1575–1578

    Article  CAS  Google Scholar 

  19. Chen XM, Lin ZJ, Chen DJ, Jia TT, Cai ZM, Wang XR, Chen X, Chen GN, Oyama M (2010) Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron 25:1803–1808

    Article  CAS  Google Scholar 

  20. Wu GH, Song XH, Wu YF, Chen XM, Luo F, Chen X (2013) Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105:379–385

    Article  CAS  Google Scholar 

  21. Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132

    Article  CAS  Google Scholar 

  22. Aoun SB, Bang GS, Koga T, Nonaka Y, Sotomura T, Taniguchi I (2003) Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions. Electrochem Commun 5:317–320

    Article  CAS  Google Scholar 

  23. Aoun SB, Dursun Z, Koga T, Bang GS, Sotomura T, Taniguchi I (2004) Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. J Electroanal Chem 567:175–183

    Article  Google Scholar 

  24. Li Y, Song YY, Yang C, Xia XH (2007) Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9:981–988

    Article  CAS  Google Scholar 

  25. Bai Y, Sun YY, Sun CQ (2008) Pt-Pb nanowire array electrode for enzyme-free glucose detection. Biosens Bioelectron 24:579–585

    Article  CAS  Google Scholar 

  26. Song YY, Zhang D, Gao W, Xia XH (2005) Non-enzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem Eur J 11:2177–2182

    Article  CAS  Google Scholar 

  27. Wang JJ, Yin GP, Shao YY, Wang ZB, Gao YZ (2008) Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support. J Phys Chem C 112:5784–5789

    Article  CAS  Google Scholar 

  28. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  29. Meng L, Jin J, Yang GX, Lu TH, Zhang H, Cai CX (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271

    Article  CAS  Google Scholar 

  30. Lu LM, Li HB, Qu FL, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:350

    Google Scholar 

  31. Park S, Chung TD, Kim HC (2003) Non-enzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046–3049

    Article  CAS  Google Scholar 

  32. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803–809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Japan Society for the Promotion of Science (JSPS) for the fellowship. This work was financially supported by the National Natural Science Foundation of China (Nos. 21305050), the Scientific Research Foundation of Shangda Li, Jimei University, China (ZC2013005), the Science and Technology Planning Project of Fujian Province, China (2012Y0052) and JSPS KAKENHI Grant Nos. 24·02335 and 24550100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomei Chen or Zhiyong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Tian, X., Zhao, L. et al. Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes. Microchim Acta 181, 783–789 (2014). https://doi.org/10.1007/s00604-013-1142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1142-0

Keywords

Navigation