Skip to main content
Log in

Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have combined the molecular imprinting and the layer-by-layer assembly techniques to obtain molecularly imprint polymers (MIPs) for the electrochemical determination of p-nitrophenol (p-NPh). Silica microspheres functionalized with thiol groups and gold nanoparticles (Au-NPs) were assembled on a gold electrode surface layer by layer. The electrode was then immersed into a solution of pyrrole and p-NPh (the template), and electropolymerization led to the creation of a polymer-modified surface. After the removal of the silica spheres and the template, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) were employed to characterize the surface. The results demonstrated the successful fabrication of macroporous MIPs embedded with Au-NPs on the gold electrode. The effects of monomer concentration and scan rate on the performance of the electrode were optimized. Excellent recognition capacity is found for p-NPh over chemically similar species. The DPV peak current is linearly related to concentration of p-NPh in the 0.1 μM to 1.4 mM range, with a 0.1 μM limit of detection (at S/N = 3).

Molecularly imprinted polymers (MIPs) and nanomaterials were combined to prepare a novel macroporous structured MIPs based electrochemical sensor for the investigation of an environmental pollutant, p-nitrophenol (p-NPh). The sensor exhibited a fast binding dynamics, good specific adsorption capacities, and high selective recognition to p-NPh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Podeh MRH, Bhattacharya SK, Qu M (1995) Effects of nitrophenols on acetate utilizing methanogenic systems. Water Res 29:391

    Article  CAS  Google Scholar 

  2. Lanouette KH (1977) Treatment of phenolic wastes. Chem Eng 84:99–106

    CAS  Google Scholar 

  3. Hu S, Xu C, Wang G, Cui D (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115–123

    Article  CAS  Google Scholar 

  4. Rawajfih Z, Nsour N (2006) Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J Colloid Interface Sci 298:39–49

    Article  CAS  Google Scholar 

  5. Tapsoba I, Bourhis S, Feng T, Pontie M (2009) Pontie, Sensitive and selective electrochemical analysis of methyl-parathion (MPT) and 4-nitrophenol (PNP) by a new type p-NiTSPc/p-PPD coated carbon fiber microelectrode (CFME). Electroanalysis 21:1167–1176

    Article  CAS  Google Scholar 

  6. Zhang W, Qiu L, Yuan Y, Xie A, Shen Y, Zhu J (2012) Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J Hazard Mater 221–222:147–154

    Article  Google Scholar 

  7. Huang X, Qiu N, Yuan D (2008) Direct enrichment of phenols in lake and sea water by stir bar sorption extraction based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis. J Chromatogr A 1194:134–138

    Article  CAS  Google Scholar 

  8. Wei Y, Kong L, Yang R, Wang L, Liu J, Huang X (2011) Single-walled carbon nanotube/pyrenecyclodecrin nanohybrids for ultrahighly sensitive and selectrive detection. Langmuir 27:10295–10301

    Article  CAS  Google Scholar 

  9. Lupu S, Lete C, Marin M, Totir N, Balaure PC (2009) Electrochemical snesors based on platimun electrodes modified wirth hybrid inorganic–organic coatings for determination of 4-nitrophenol and dopamine. Electrochim Acta 54:1932–1938

    Article  CAS  Google Scholar 

  10. Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11:1365–1368

    Article  CAS  Google Scholar 

  11. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201–201:250–259

    Article  Google Scholar 

  12. Arcinte A, Mahosenaho M, Pinteala M, Sesay A-M, Virtanen V (2011) Electrochemical oxidation p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim Acta 174:337–343

    Article  Google Scholar 

  13. Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169:87–92

    Article  CAS  Google Scholar 

  14. Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conductiong polymer hybrid recognition element. Anal Chem 81:3576–3584

    Article  CAS  Google Scholar 

  15. Yang Z, Zhang C (2011) Molecularly imprinted hydroxyapatite thin film for bilirubin recognition. Biosens Bioelectron 29:167–171

    Article  CAS  Google Scholar 

  16. Zhang Z, Hu Y, Zhang H, Luo L, Yao S (2010) Layer-by-layer assembly sensitive electrochemical sensor for selectively probing L-histidine based on molecular imprinting sol–gel at functionalized indium tin oxide electrode. Biosens Bioelectron 26:696–702

    Article  Google Scholar 

  17. Cai D, Ren L, Zhao H, Xu C, Zhang L, Yu Y, Wang H, Lan Y, Roberts NF, Chuang JH, Naughton MJ, Ren Z, Chiles TC (2010) A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat Nanotechnol 5:597–601

    Article  CAS  Google Scholar 

  18. Wang Z, Li H, Chen J, Xue Z, Wu B, Lu X (2011) Acetylsalicylic acid electrochemical sensor based on PATP-AuNPs modified molecularly imprinted polymer film. Talanta 85:1672–1679

    Article  CAS  Google Scholar 

  19. Huang J, Zhang X, Lin Q, He X, Xing X, Huai H, Lian W, Zhu H (2011) Electrochemical sensor based on imprinted sol–gel and nanomaterials for sensitive determination of bisphenol A. Food Control 22:786–791

    Article  CAS  Google Scholar 

  20. Li J, Li Y, Zhang Y, Wei G (2012) Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Anal Chem 84:1888–1893

    Article  CAS  Google Scholar 

  21. Zhang D, Yu D, Zhao W, Yang Q, Kajiura H, Li Y, Zhou T, Shi G (2012) A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl. Analyst 137:2629–2636

    Article  CAS  Google Scholar 

  22. Wang H, Zhao H, Quan X, Chen S (2011) Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode. Electroanalysis 23:1863–1869

    Article  CAS  Google Scholar 

  23. Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T, Li Y, Zhou X, Jiang H (2011) Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol. Biosens Bioelectron 29:29–33

    Article  CAS  Google Scholar 

  24. Peng H, Wang S, Zhang Z, Xiong H, Li J, Chen L, Li Y (2012) Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label0free detection of vanillin. J Agric Food Chem 60:1921–1928

    Article  CAS  Google Scholar 

  25. Griffete N, Frederich H, Maître A, Schwob C, Ravaine S, Carbonnier B, Chehimi MM, Mangeney C (2011) Introduction of planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A. J Colloid Interface Sci 364:18–23

    Article  CAS  Google Scholar 

  26. Wang L, Lin F, Yu L (2012) A molecularly imprinted photomic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 137:3502–3509

    Article  CAS  Google Scholar 

  27. Stöber W, Fink A (1998) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  28. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nat (Landon) Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  29. Liu YT, Deng J, Xiao XL, Ding L, Yuan YL, Li H, Li XT, Yan XN, Wang LL (2011) Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta 56:4595–4602

    Article  CAS  Google Scholar 

  30. Gong J-L, Gong F-C, Zeng G-M, Shen G-L, Yu R-Q (2003) A novel electrosynthesized polymer applied to molecular imprinting technology. Talanta 61:447–453

    Article  CAS  Google Scholar 

  31. Zhang WB, Chang JL, Chen JH, Xu F, Wang F, Jiang K, Gao ZY (2012) Graphene-Au composite sensor for electrochemical detection of para-nitrophenol. Res Chem Intermed 38:2443–2455

    Article  CAS  Google Scholar 

  32. Hu YF, Zhang ZH, Zhang HB, Luo LJ, Yao SZ (2012) Sensitive and selective imprinted electrochemical sensor for p-nitrophenol based on ZnO nanoparticles/carbon nanotubes doped chitosan films. Thin Solid Films 520:5314–5321

    Article  CAS  Google Scholar 

  33. Rounaghi G, Kakhki RM, Azizi TH (2012) Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic croun ether/silver nanoparticles. Mater Sci Eng C 32:172–177

    Article  CAS  Google Scholar 

  34. Roy AC, Nisha VS, Dhand C, Ali MA, Malhotra BD (2013) Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection. Anal Chim Acta 777:63–67

    Article  CAS  Google Scholar 

  35. Zhang TT, Lang QL, Yang DP, Li L, Zeng L-X, Zheng C, Li T, Wei MD, Liu AH (2013) Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim Acta 106:127–134

    Article  CAS  Google Scholar 

  36. Jiao XX, Luo HQ, Li NB (2013) Fabrication of graphene-gold nanocomposites by electrochemical co-reduction and their electrocatalytic activity toward 4-nitrophenol oxidation. J Electroanal Chem 691:83–89

    Article  CAS  Google Scholar 

  37. Liu ZN, Du JG, Qiu CC, Huang LH, Ma HY, Shen DZ, Ding Y (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Comm 11:1365–1368

    Article  CAS  Google Scholar 

  38. Mhammedi MAE, Achak M, Bakasse M, Chtaini A (2009) Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: Application in river water samples. J Hazard Mater 163:323–328

    Article  Google Scholar 

  39. Yin HS, Zhou YL, Ai SY, Liu XG, Zhu LS, Lu LN (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169:87–92

    Article  CAS  Google Scholar 

  40. Xu XM, Liu Z, Zhang X, Duan S, Xu S, Zhou CL (2011) β-cyclodextrin functionized mesoporous silica for electrochemical selective sensor:simultameous determination of nitrophenol isomers. Electrochim Acta 58:142–149

    Article  CAS  Google Scholar 

  41. Chu L, Han L, Zhang XL (2011) Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J Appl Electrochem 41:687–794

    Article  CAS  Google Scholar 

  42. Wei Y, Kong LT, Yang R, Wang L, Liu JH, Huang XJ (2011) Single-walled carbon nanotube/pyrenecyclodextrin nanohybrids for ultra highly sensitive and selective determination of para-nitrophenol. Langmuir 27:10295–10301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the support of the National Natural Science Foundation of China for young program (21005002), Anhui Provincial Natural Science Foundation for Young Program (11040606Q35), Anhui University Provincial Natural Science Foundation Key program (KJ2010A138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwen Kan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Yang, L., Zhong, M. et al. Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles. Microchim Acta 180, 1461–1469 (2013). https://doi.org/10.1007/s00604-013-1090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1090-8

Keywords

Navigation