Skip to main content
Log in

Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have synthesized silver nanoparticles (AgNPs) decorated with α-cyclodextrin (CD) by using the traditional silver mirror reaction in the presence of CD. The CD-AgNPs were used as substrate in surface-enhanced Raman spectroscopy (SERS) for determining melamine. The intensity of the Raman band of melamine at 704 cm−1 was used to determine melamine in milk and milk powder. The use of CD-AgNPs as the SERS substrate rather than classical silver nanoparticles makes the method more sensitive in giving an enhancement by a factor of up to ~ 106 in scattering efficiency. The effects of the volume of solutions (of CD-AgNPs, NaCl, NaOH, melamine) and of mixing time were optimized. The standard addition method was employed for quantitative analysis. The correlation coefficient of the calibration plot is 0.9995, and the limit of detection is 3.0 μg L−1. The method was successfully applied to the determination of melamine in milk and milk powder, with relative standard deviations of <10 % and recoveries between 89 and 104 %.

Novel silver nanoparticles decorated with α-cyclodextrin (CD-AgNPs) were prepared. The melamine in milk and milk powder was determined using SERS and CD-AgNPs. The limit of detection is 3.0 μg L−1, and recoveries between 89 and 104 %

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brosseau CL, Gambardella A, Casadio F, Grzywacz CM, Wouters J, Van Duyne RP (2009) Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal Chem 81(8):3056–3062

    Article  CAS  Google Scholar 

  2. Tyan Y-C, Yang M-H, Jong S-B, Wang C-K, Shiea J (2009) Melamine contamination. Anal Bioanal Chem 395(3):729–735

    Article  CAS  Google Scholar 

  3. World Health Organization (2008) Melamine and Cyanuric Acid: Toxicity, Preliminary Risk Assessment and Guidance on Levels in Food, World Health Organization, Geneva, Switzerland

  4. FDA (2009) FDA issues interim safety and risk assessment of melamine and melamine-related compounds in food

  5. Li J, Qi H-Y, Shi Y-P (2009) Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction and gas chromatography–mass spectrometry. J Chromatogr A 1216(29):5467–5471

    Article  CAS  Google Scholar 

  6. Wang B, Wang Y, Yang H, Wang J, Deng A (2011) Preparation and characterization of molecularly imprinted microspheres for selective extraction of trace melamine from milk samples. Microchim Acta 174(1–2):191–199

    CAS  Google Scholar 

  7. Sancho JV, Ibáñez M, Grimalt S, Pozo ÓJ, Hernández F (2005) Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry. Anal Chim Acta 530(2):237–243

    Article  CAS  Google Scholar 

  8. Filigenzi MS, Puschner B, Aston LS, Poppenga RH (2008) Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry. J Agric Food Chem 56(17):7593–7599

    Article  CAS  Google Scholar 

  9. Jin G-P, Yu B, Yang S-Z, Ma H-H (2011) Extremely sensitive electrode for melamine using a kind of molecularly imprinted nano-porous film. Microchim Acta 174(3–4):265–271

    CAS  Google Scholar 

  10. Manzoori J, Amjadi M, Hassanzadeh J (2011) Enhancement of the chemiluminescence of permanganate-formaldehyde system by gold/silver nanoalloys and its application to trace determination of melamine. Microchim Acta 175(1–2):47–54

    CAS  Google Scholar 

  11. Chen Z, Yan X (2009) Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection. J Agric Food Chem 57(19):8742–8747

    Article  CAS  Google Scholar 

  12. Garber EAE (2008) Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J Food Protect 71(3):590–594

    CAS  Google Scholar 

  13. King FW, Van Duyne RP, Schatz GC (1978) Theory of Raman scattering by molecules adsorbed on electrode surfaces. J Chem Phys 69:4472–4481

    Article  CAS  Google Scholar 

  14. Efrima S, Metiu H (1979) Classical theory of light scattering by an adsorbed molecule. I. Theory. J Chem Phys 70(4):1602–1613

    Article  CAS  Google Scholar 

  15. Efrima S, Metiua H (1979) Resonant Raman scattering by adsorbed molecules. J Chem Phys 70(4):1939–1947

    Article  CAS  Google Scholar 

  16. Efrima S, Metiu H (1979) Light scattering by a molecule near a solid surface. II. Model calculations. J Chem Phys 70(5):2297–2309

    Article  CAS  Google Scholar 

  17. Lombardi JR, Birke RL, Lu T, Xu J (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. J Chem Phys 84(8):4174–4180

    Article  CAS  Google Scholar 

  18. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250

    Article  CAS  Google Scholar 

  19. Kambhampati P, Child CM, Foster MC, Campion A (1998) On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J Chem Phys 108(12):5013–5026

    Article  CAS  Google Scholar 

  20. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2976

    Article  CAS  Google Scholar 

  21. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  22. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, WuDe Y, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395

    Article  CAS  Google Scholar 

  23. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  24. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496

    Article  CAS  Google Scholar 

  25. Mircescu NE, Oltean M, Chis V, Leopold N (2012) FTIR, FT-Raman, SERS and DFT study on melamine. Vib Spectrosc 62:165–171

    Article  CAS  Google Scholar 

  26. Zhang X, Zou M, Qi X, Liu F, Zhu X, Zhao B (2010) Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. J Raman Spectrosc 41(12):1655–1660

    Article  Google Scholar 

  27. Zhang J, Qu S, Zhang L, Tang A, Wang Z (2011) Quantitative surface enhanced Raman scattering detection based on the “sandwich” structure substrate. Spectrochim Acta A 79(3):625–630

    Article  CAS  Google Scholar 

  28. Chen Y, Wu L, Chen Y, Bi N, Zheng X, Qi H, Qin M, Liao X, Zhang H, Tian Y (2012) Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177(3–4):341–348

    CAS  Google Scholar 

  29. Yaffe NR, Ingram A, Graham D, Blanch EW (2010) A multi-component optimisation of experimental parameters for maximising SERS enhancements. J Raman Spectrosc 41(6):618–623

    Article  CAS  Google Scholar 

  30. Jana NR, Pal T (2007) Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv Mater 19(13):1761–1765

    Article  CAS  Google Scholar 

  31. Mecker LC, Tyner KM, Kauffman JF, Arzhantsev S, Mans DJ, Gryniewicz-Ruzicka CM (2012) Selective melamine detection in multiple sample matrices with a portable Raman instrument using surface enhanced Raman spectroscopy-active gold nanoparticles. Anal Chim Acta 733:48–55

    Article  CAS  Google Scholar 

  32. Du X, Chu H, Huang Y, Zhao Y (2010) Qualitative and quantitative determination of melamine by surface-enhanced Raman spectroscopy using silver nanorod array substrates. Appl Spectrosc 64(7):781–785

    Article  CAS  Google Scholar 

  33. Yazgan NN, Boyaci IH, Topcu A, Tamer U (2012) Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles. Anal Bioanal Chem 403(7):2009–2017

    Article  CAS  Google Scholar 

  34. Kim A, Barcelo SJ, Williams RS, Li Z (2012) Melamine sensing in milk products by using surface enhanced Raman scattering. Anal Chem 84(21):9303–9309

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National “Twelfth Five-Year” Plan for Science and Technology Support (No. 2012BAF14B08), Program for New Century Excellent Talents in University (No. NECT-10-0443), National Natural Science Foundation of China (No. 21105037) and Science and Technology Developing Foundation of Jilin Province (No. 20121808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqian Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, P., Liang, F., Sun, Y. et al. Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles. Microchim Acta 180, 1173–1180 (2013). https://doi.org/10.1007/s00604-013-1059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1059-7

Keywords

Navigation