Skip to main content
Log in

A Surface Enhanced Raman Scattering (SERS) microdroplet detector for trace levels of crystal violet

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a microfluidic platform that integrates a winding microdroplet chip and a surface-enhanced Raman scattering (SERS) detection system for trace determination of crystal violet (CV). Colloidal silver was applied to generate SERS. Compared to the continuous flow microfluidic system, the microdroplet based detection described here effectively eliminates any memory effects. Effects of flow pattern, droplet size, surfactant, and position of detection were optimized. Under optimal conditions, there is a linear correlation between signal and the concentration of CV in the 10 nM to 800 nM range, with a correlation coefficient (R2) of 0.9967. The limit of detection in water is 3.6 nM.

A winding microdroplet chip based on SERS detection was developed for trace levels of crystal violet. Under optimal conditions,there is a good linear correlation in the 10 nM to 800 nM range with LOD is 3.6 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Šafařı́k I, Šafařı́ková M (2002) Detection of low concentrations of malachite green and crystal violet in water. Water Res 36(1):196–200. doi:10.1016/S0043-1354(01)00243-3

    Article  Google Scholar 

  2. Saeed A, Sharif M, Iqbal M (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater 179(1–3):564–572. doi:10.1016/j.jhazmat.2010.03.041

    Article  CAS  Google Scholar 

  3. Singh KP, Gupta S, Singh AK, Sinha S (2011) Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J Hazard Mater 186(2–3):1462–1473. doi:10.1016/j.jhazmat.2010.12.032

    Article  CAS  Google Scholar 

  4. Shen YD, Deng XF, Xu ZL, Wang Y, Lei HT, Wang H, Yang JY, Xiao ZL, Sun YM (2011) Simultaneous determination of malachite green, brilliant green and crystal violet in grass carp tissues by a broad-specificity indirect competitive enzyme-linked immunosorbent assay. Anal Chim Acta 707(1–2):148–154. doi:10.1016/j.aca.2011.09.006

    Article  CAS  Google Scholar 

  5. Rushing LG, Thompson HC Jr (1997) Simultaneous determination of malachite green, gentian violet and their leuco metabolites in catfish or trout tissue by high-performance liquid chromatography with visible detection. J Chromatogr B 688(2):325–330. doi:10.1016/S0378-4347(96)00298-8

    Article  CAS  Google Scholar 

  6. Long C, Mai Z, Yang Y, Zhu B, Xu X, Lu L, Zou X (2009) Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction. J Chromatogr A 1216(12):2275–2281. doi:10.1016/j.chroma.2009.01.047

    Article  CAS  Google Scholar 

  7. Dowling G, Mulder PP, Duffy C, Regan L, Smyth MR (2007) Confirmatory analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 586(1–2):411–419. doi:10.1016/j.aca.2006.08.045

    Article  CAS  Google Scholar 

  8. Gao M, Xing G, Yang J, Yang L, Zhang Y, Liu H, Fan H, Sui Y, Feng B, Sun Y, Zhang Z, Liu S, Li S, Song H (2012) Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering. Microchim Acta 179(3–4):315–321. doi:10.1007/s00604-012-0898-y

    Article  CAS  Google Scholar 

  9. Luo Z, Chen K, Lu D, Han H, Zou M (2011) Synthesis of p-aminothiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications. Microchim Acta 173(1–2):149–156. doi:10.1007/s00604-010-0537-4

    CAS  Google Scholar 

  10. Li Q, Du Y, Tang H, Wang X, Chen G, Iqbal J, Wang W, Zhang W (2012) Ultra sensitive surface-enhanced Raman scattering detection based on monolithic column as a new type substrate. J RamanSpectrosc 43(10):1392–1396. doi:10.1002/jrs.4095

    Article  CAS  Google Scholar 

  11. Chen Y, Wu L, Chen Y, Bi N, Zheng X, Qi H, Qin M, Liao X, Zhang H, Tian Y (2012) Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177(3–4):341–348. doi:10.1007/s00604-012-0777-6

    CAS  Google Scholar 

  12. Li Q-Q, Du Y-P, Xu Y, Wang X, Ma S-Q, Geng J-P, Cao P, Sui T (2013) Rapid and sensitive detection of pesticides by surface-enhanced Raman spectroscopy technique based on glycidyl methacrylate–ethylene dimethacrylate (GMA–EDMA) porous material. Chin Chem Lett 24(4):332–334. doi:10.1016/j.cclet.2013.02.002

    Article  CAS  Google Scholar 

  13. Lai K, Zhang Y, Du R, Zhai F, Rasco BA, Huang Y (2011) Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sens & Instrumen Food Qual 5(1):19–24. doi:10.1007/s11694-011-9106-8

    Article  Google Scholar 

  14. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using Surface-Enhanced Raman Scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  15. Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP (2011) Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment. J Am Chem Soc 133(11):4115–4122. doi:10.1021/ja110964d

    Article  CAS  Google Scholar 

  16. Lee S, Choi J, Chen L, Park B, Kyong JB, Seong GH, Choo J, Lee Y, Shin KH, Lee EK, Joo SW, Lee KH (2007) Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal Chim Acta 590(2):139–144. doi:10.1016/j.aca.2007.03.049

    Article  CAS  Google Scholar 

  17. Marz A, Ackermann KR, Malsch D, Bocklitz T, Henkel T, Popp J (2009) Towards a quantitative SERS approach–online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J Biophotonics 2(4):232–242. doi:10.1002/jbio.200810069

    Article  Google Scholar 

  18. Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472. doi:10.1021/ac3031543

    Article  CAS  Google Scholar 

  19. Konry T, Bale SS, Bhushan A, Shen K, Seker E, Polyak B, Yarmush M (2011) Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection. Microchim Acta 176(3–4):251–269. doi:10.1007/s00604-011-0705-1

    Google Scholar 

  20. Yea KH, Lee S, Kyong JB, Choo J, Lee EK, Joo SW, Lee S (2005) Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy. Analyst 130(7):1009–1011. doi:10.1039/b501980j

    Article  CAS  Google Scholar 

  21. Zhang X, Yin H, Cooper JM, Haswell SJ (2008) Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal Bioanal Chem 390(3):833–840. doi:10.1007/s00216-007-1564-9

    Article  CAS  Google Scholar 

  22. Chon H, Lim C, Ha S-M, Ahn Y, Lee EK, Chang S-I, Seong GH, Choo J (2010) On-chip immunoassay using surface-enhanced raman scattering of hollow gold nanospheres. Anal Chem 82(12):5290–5295. doi:10.1021/ac100736t

    Article  CAS  Google Scholar 

  23. Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8(18):2665–2670. doi:10.1002/cphc.200700554

    Article  CAS  Google Scholar 

  24. Gao R, Choi N, Chang SI, Kang SH, Song JM, Cho SI, Lim DW, Choo J (2010) Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta 681(1–2):87–91. doi:10.1016/j.aca.2010.09.036

    Article  CAS  Google Scholar 

  25. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  26. Shi W, Qin J, Ye N, Lin B (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8(9):1432–1435. doi:10.1039/b808753a

    Article  CAS  Google Scholar 

  27. Seo M, Paquet C, Nie Z, Xu S, Kumacheva E (2007) Microfluidic consecutive flow-focusing droplet generators. Soft Matter 3(8):986. doi:10.1039/b700687j

    Article  CAS  Google Scholar 

  28. Tice JD, Lyon AD, Ismagilov RF (2004) Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507(1):73–77. doi:10.1016/j.aca.2003.11.024

    Article  CAS  Google Scholar 

  29. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6(3):437–446. doi:10.1039/b510841a

    Article  CAS  Google Scholar 

  30. Baret JC (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433. doi:10.1039/c1lc20582j

    Article  CAS  Google Scholar 

  31. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 115(7):792–796. doi:10.1002/ange.200390172

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (grant No: 21205041, No: 61008003), a grant from Research Center of Analysis and Test of East China University of Science and Technology,China, and Shanghai Rising-Star Program (No: 11QA1402100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Wu or Yiping Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Jiang, W., Wang, H. et al. A Surface Enhanced Raman Scattering (SERS) microdroplet detector for trace levels of crystal violet. Microchim Acta 180, 997–1004 (2013). https://doi.org/10.1007/s00604-013-1026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1026-3

Keywords

Navigation