Skip to main content
Log in

FET immunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A micro FET-based immunosensor was developed for the determination of hemoglobin-A1c (HbA1c). The HbA1c/hemoglobin ratio is an important index in diabetes control. The sensor was fabricated by Complementary Metal-Oxide-Semiconductor Transistor (CMOS) and Micro Electronic Mechanical System (MEMS) techniques. The antibodies were immobilized via mixed self-assembled monolayers (SAMs) on a gold nanofilm. The nanofilm was deposited on a gold electrode by seed-mediated growth and gave a uniform and well distributed coverage. Nonspecific sites and interferences by noise were eliminated by covering the AuNPs with mixed SAMs. Compared to the immunosensor fabricated via the mixed SAMs method without gold nanofilm, the immunosensor displays a more than 2-fold sensitivity. The immunosensor is capable of detecting HbA1c and hemoglobin in hemolyzed and diluted whole blood, and results showed good agreement with the established clinical method.

Based on CMOS and MEMS techniques, a micro FET-based immunosensor was developed for the hemoglobin-A1c level determination. The antibodies were immobilized based on the mixed self-assembled monolayers and seed-mediated growth method. The immunosensor can detect HbA1c and hemoglobin simultaneously and has good potential for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Diabetes Association (2003) Standards of medical care for patients with diabetes mellitus. Diabetes Care 26:s33–s50. doi:10.2337/diacare.26.2007.S33

    Article  Google Scholar 

  2. Scognamiglio V, Pezzotti G, Pezzotti I, Cano J, Buonasera K, Giannini D, Giardi MT (2010) Microchim Acta 170:215–225. doi:10.1007/s00604-010-0313-5

    Article  CAS  Google Scholar 

  3. Tang D, Xia B (2007) Electrochemical immunosensor and biochemical analysis for carcinoembryonic antigen in clinical diagnosis. Microchim Acta 163:41–48. doi:10.1007/s00604-007-0918-5

    Article  Google Scholar 

  4. Fang L, Li W, Zhou Y et al (2009) A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection. Sens Actuators B: Chem 137:235–238. doi:10.1016/j.snb.2008.09.045

    Article  Google Scholar 

  5. Anzai J, Hashimoto J, Osa T et al (1988) Sensors based on an ion-sensitive field-effect transistor coated with stearic acid Langmuir–Blodgett membrane. Anal Sci 4:247–250. doi:10.2116/analsci.4.247

    Article  CAS  Google Scholar 

  6. Wan K, Chovelon JM, Jaffrezic-Renault N (2000) Enzyme-octadecylamine Langmuir–Blodgett membranes for ENFET biosensors. Talanta 52:663–670. doi:10.1016/S0039-9140(00)00407-0

    Article  CAS  Google Scholar 

  7. Feng CL, Xu YH, Song LM (2000) Study on highly sensitive potentiometric IgG immunosensor. Sens Actuators B: Chem 66:190–192. doi:10.1016/S0925-4005(00)00382-8

    Article  Google Scholar 

  8. Kamahori M, Lshige Y, Shimoda M (2007) A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor. Biosens Bioelectron 22:3080–3085. doi:10.1016/j.bios.2007.01.011

    Article  CAS  Google Scholar 

  9. Qu L, Xia S, Bian C et al (2009) A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole–gold nanoparticles composite. Biosens Bioelectron 24:3419–3424. doi:10.1016/j.bios.2008.07.077

    Article  CAS  Google Scholar 

  10. Lei CX, Gong FC, Shen GL et al (2003) Amperometric immunosensor for Schistosoma japonicum antigen using antibodies loaded on a nano-Au monolayer modified chitosan-entrapped carbon paste electrode. Sens Actuators B: Chem 96:582–588. doi:10.1016/j.snb.2003.06.001

    Article  Google Scholar 

  11. An HZ, Yuan R, Tang DP et al (2007) Dual-amplification of antigen–antibody interactions via backfilling gold nanoparticles on (3-mercaptopropyl) trimethoxysilane sol–gel functionalized interface. Electroanalysis 19:479–486. doi:10.1002/elan.200603752

    Article  CAS  Google Scholar 

  12. Cai H, Shang C, Hsing IM (2004) Sequence-specific electrochemical recognition of multiple species using nanoparticle labels. Analytica Chimica Acta 523:61–68. doi:10.1016/j.aca.2004.06.072

    Article  CAS  Google Scholar 

  13. Long Y, Nie L, Chen JH et al (2003) Piezoelectric quartz crystal impedance and electrochemical impedance study of HSA–diazepam interaction by nanogold-structured sensor. J Colloid Interface Sci 263:106–112. doi:10.1016/S0021-9797(03)00141-3

    Article  CAS  Google Scholar 

  14. Carralero Sanz V, Luz Mena M, González-Cortés A et al (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1–8. doi:10.1016/j.aca.2004.10.007

    Article  CAS  Google Scholar 

  15. Zhang S, Wang N, Yu H et al (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67:15–22. doi:10.1016/j.bioelechem.2004.12.002

    Article  CAS  Google Scholar 

  16. Wu BY, Hou SH, Yin F et al (2007) Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 22:838–844. doi:10.1016/j.bios.2006.03.009

    Article  CAS  Google Scholar 

  17. Odenthal KJ, Gooding JJ (2007) An introduction to electrochemical DNA biosensors. Analyst 132:603–610. doi:10.1039/B701816A

    Article  CAS  Google Scholar 

  18. Liu B, Lu L, Li Q, Xie G (2011) Disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film containing gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes. Microchim Acta 173:513–520. doi:10.1007/s00604-011-0575-6

    Article  CAS  Google Scholar 

  19. Tang D, Xia B, Zhang Y (2008) Direct electrochemistry and electrocatalysis of hemoglobin in a multilayer {nanogold=PDDA}n inorganic–organic hybrid film. Microchim Acta 160:367–374. doi:10.1007/s00604-007-0840-x

    Article  CAS  Google Scholar 

  20. Jiang DC, Tang J, Liu BH (2003) Covalently coupling the antibody on an amine-self-assembled gold surface to probe hyaluronan-binding protein with capacitance measurement. Biosens Bioelectron 18:1183–1191. doi:10.1016/S0956-5663(02)00253-1

    Article  CAS  Google Scholar 

  21. Mirsky VM, Riepl M, Wolfbeis OS (1997) Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens Bioelectron 12:977–989. doi:10.1016/S0956-5663(97)00053-5

    Article  CAS  Google Scholar 

  22. Pillay J, Ozoemena KI (2009) Layer-by-layer self-assembled nanostructured phthalocyaninatoiron(II)/SWCNT-poly(m-aminobenzenesulfonic acid) hybrid system on gold surface: Electron transfer dynamics and amplification of H2O2 response. Electrochim Acta 54:5053–5059. doi:10.1016/j.electacta.2008.12.056

    Article  CAS  Google Scholar 

  23. Mena ML, Yáñez-Sedeño P, Pingarrón JM (2005) A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Anal Biochem 336:20–27. doi:10.1016/j.ab.2004.07.038

    Article  CAS  Google Scholar 

  24. Xu S, Peng B, Han X (2007) A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres. Biosens Bioelectron 22:1807–1810. doi:10.1016/j.bios.2006.07.008

    Article  CAS  Google Scholar 

  25. Oyama M (2010) Recent nanoarchitectures in metal nanoparticle-modified electrodes for electroanalysis. Anal Sci 26:1–12. doi:10.2116/analsci.26.1

    Article  CAS  Google Scholar 

  26. Bergveld P (2003) Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B: Chem 88:1–20. doi:10.1016/S0925-4005(02)00301-5

    Article  Google Scholar 

  27. Fähnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54:531–559. doi:10.1016/S0039-9140(01)00312-5

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Basic Research Program of China (973 Program) (Project Number 2009CB320300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhong Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Q., Bian, C., Tong, J. et al. FET immunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers. Microchim Acta 176, 65–72 (2012). https://doi.org/10.1007/s00604-011-0675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0675-3

Keywords

Navigation