Skip to main content
Log in

On the Residual Strength of Rocks and Rockmasses

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Alejano LR, Rodríguez-Dono A, Alonso E, Fdez-Manín G (2009) Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behavior. Tunn Undergr Space Tech 24:689–705

    Article  Google Scholar 

  • Alejano LR, Arzúa J, Bozorgzadeh N, Harrison JP (2017) Triaxial strength and deformability of intact and increasingly jointed granite samples. Int J Rock Mech Min Sci 95:87–103

    Article  Google Scholar 

  • Arthur JRF, Dunstan T, Al-Ani QAJ, Assadi A (1977) Plastic deformation and failure in granular media. Géotechnique 27:53–74

    Article  Google Scholar 

  • Arzúa J, Alejano LR (2013) Dilation in granite during servo-controlled triaxial strength tests. Int J Rock Mech Min Sci 61(1):43–56

    Article  Google Scholar 

  • ASTM (2015) D7012 Standard Test Method for Compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International, West Conshohocken (USA), p 9

    Google Scholar 

  • Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7(4):287–332

    Article  Google Scholar 

  • Barton N (1976) The shear strength of rock and rock joints. Int J Rock Mech Min Sci 13(9):255–279

    Article  Google Scholar 

  • Bésuelle P, Desrues J, Raynaud S (2000) Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 37:1223–1237

    Article  Google Scholar 

  • Boyd DL, Trainor-Guitton W, Walton G (2018) Assessment of rock unit variability through use of spatial variograms. Eng Geol 233:200–212

    Article  Google Scholar 

  • Brace WF (1963) A note on brittle crack growth in compression. J Geophys Res 68:3709–3713

    Article  Google Scholar 

  • Brady BHG, Brown ET (1985) Rock strength and deformability. Rock mechanics for underground mining. George Allen & Unwin, London (UK), pp 86–134

    Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116(4–5):615–626

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Minami M (2007) Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci 44(2):247–265

    Article  Google Scholar 

  • Cook NG (1965) The failure of rock. Int J Rock Mech Min Sci 2(4):389–403

    Article  Google Scholar 

  • Crowder JJ, Bawden WF (2004) Review of post-peak parameters and behaviour of rock masses: current trends and research. Rocnews

  • Diederichs MS (2003) Manuel Rocha medal recipient rock fracture and collapse under low confinement conditions. Rock Mech Rock Eng 36(5):339–381

    Article  Google Scholar 

  • Gao FQ, Kang HP (2016) Effects of pre-existing discontinuities on the residual strength of rock mass—insight from a discrete element method simulation. J Struct Geol 85:40–50

    Article  Google Scholar 

  • Gowd TN, Rummel F (1980) Effect of confining pressure on the fracture behaviour of a porous rock. Int J Rock Mech Min Sci 17(4):225–229

    Article  Google Scholar 

  • Hobbs DW (1966) A study of the behaviour of a broken rock under triaxial compression, and its application to mine roadways. Int J Rock Mech Min Sci 3(1):11–43

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron Eng

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion-2002 edition. Proc NARMS-Tac 1:267–273

    Google Scholar 

  • Hudson JA, Brown ET, Fairhurst C (1971) Shape of the complete stress–strain curve for rock. In: Proceedings of the 13th symposium on rock mechanics. University of Illinois: Urbana-Champaign, Illinois

  • Jaeger JC (1969) Behavior of closely jointed rock. In: The 11th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association

  • Kemeny JM, Cook NGW (1987) Crack models for the failure of rocks in compression. Constitutive laws for engineering materials: theory and applications, vol II. Elsevier, New York, pp 879–887

    Google Scholar 

  • Kovari K, Tisa A (1975) Multiple failure state and strain controlled triaxial tests. Rock Mech 7(1):17–33

    Article  Google Scholar 

  • Kumar R, Sharma KG, Varadarajan A (2010) Post-peak response of some metamorphic rocks of India under high confining pressures. Int J Rock Mech Min Sci 47(8):1357–1362

    Article  Google Scholar 

  • Labrie D (2017) Frictional properties of rocks as a function of rock type, specimen size and confining pressure. In: The 51st US Rock Mechanics Symposium. American Rock Mechanics Association

  • Labrie D, Conlon B (2008) Hydraulic and poroelastic properties of porous rocks and concrete materials. In: The 42nd US rock mechanics symposium (USRMS). American Rock Mechanics Association

  • Li C, Nordlund E (1993) Deformation of brittle rocks under compression—with particular reference to microcracks. Mech Mater 15:223–239

    Article  Google Scholar 

  • Li X, Konietzky H, Li X, Wang Y (2018) Failure pattern of brittle rock governed by initial microcrack characteristics. Acta Geotechnica. https://doi.org/10.1007/s11440-018-0743-5

    Article  Google Scholar 

  • Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34(5):698–725

    Article  Google Scholar 

  • Masoumi H (2013) Investigation into the Mechanical Behaviour of Intact Rock at Different Sizes. In: Ph.D. Thesis. University of New South Wales: Sydney, Australia

  • Niu S, Jing H, Hu K, Yang D (2010) Numerical investigation on the sensitivity of jointed rock mass strength to various factors. Min Sci Technol 20(4):530–534

    Google Scholar 

  • Ord A, Hobbs B, Regenauer-Lieb K (2007) Shear band emergence in granular materials, a numerical study. Int J Numer Anal Methods Geomech 31:373–393

    Article  Google Scholar 

  • Peng J, Cai M, Rong G, Yao M-D, Jiang Q-H, Zhou C-B (2017) Determination of confinement and plastic strain dependent post-peak strength of intact rocks. Eng Geol 218:187–196

    Article  Google Scholar 

  • Rosengren KJ (1968) Rock mechanics of the Black Star open cut, Mount Isa. Ph.D. Thesis. The Australian National University: Canberra, Australia

  • Roshan H, Masoumi H, Regenauer-Lieb K (2017) Frictional behaviour of sandstone: a sample-size dependent triaxial investigation. J Struct Geol 94:154–165

    Article  Google Scholar 

  • Rummel F, Fairhurst C (1970) Determination of the post-failure behavior of brittle rock using a servo-controlled testing machine. Rock Mech 2(4):189–204

    Article  Google Scholar 

  • Sulem J, Ouffroukh H (2006) Hydromechanical behaviour of fontainebleau sandstone. Rock Mech Rock Eng 39:185–213

    Article  Google Scholar 

  • Vardoulakis I (1980) Shear band inclination and shear modulus of sand in biaxial tests. Int J Numer Anal Methods Geomech 4:103–119

    Article  Google Scholar 

  • Vermeer PA, De Borst R (1984) Non-associated plasticity for soils, concrete and rock. Heron 29:1–64

    Google Scholar 

  • Walton G (2017) Scale effects observed in compression testing of Stanstead granite including post-peak strength and dilatancy. Geotech Geol Eng 36:1091–1111

    Google Scholar 

  • Walton G, Diederichs MS (2015) A new model for the dilation of brittle rocks based on laboratory compression test data with separate treatment of dilatancy mobilization and decay. Geotech Geol Eng 33(3):661–679

    Article  Google Scholar 

  • Walton G, Arzua J, Alejano LR, Diederichs MS (2015) A laboratory-testing-based study on the strength, deformability, and dilatancy of carbonate rocks at low confinement. Rock Mech Rock Eng 48(3):941–958

    Article  Google Scholar 

  • Walton G, Hedayat A, Kim E, Labrie D (2017) Post-yield strength and dilatancy evolution across the brittle-ductile transition in indiana limestone. Rock Mech Rock Eng 50(7):1691–1710

    Article  Google Scholar 

  • Wawersik WR, Brace WF (1971) Post-failure behavior of a granite and diabase. Rock Mech 3(2):61–85

    Article  Google Scholar 

  • Yang SQ, Jing HW, Wang SY (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45(4):583–606

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Luke Weidner for proofreading a version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Walton.

Ethics declarations

Conflict of interest

G Walton declares that he has no conflict of interest. D. Labrie declares that he has no conflict of interest. L. Alejano declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walton, G., Labrie, D. & Alejano, L.R. On the Residual Strength of Rocks and Rockmasses. Rock Mech Rock Eng 52, 4821–4833 (2019). https://doi.org/10.1007/s00603-019-01879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01879-5

Keywords

Navigation