Skip to main content
Log in

Dynamic Wellbore Stability Analysis Under Tripping Operations

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The loadings which act on the wellbore are more frequently dynamic than static, such as the surge/swab pressure caused by tripping operations. The changing rate of loading could induce a change in wellbore stress and result in wellbore instability. The conventional Kirsch solution to calculate wellbore stress is only applicable to the steady state without considering the coupled deformation–diffusion effect. To account for these deficiencies, this paper introduces a coupled poroelastodynamics model to obtain wellbore stress distribution under dynamic loading. The model is solved by the implicit finite-difference method with the surge/swab pressure caused by tripping operations taken as the specific dynamic loading source. Then, failure criteria are applied to analyze dynamic wellbore stability and the hemisphere plots of minimum mud density (MMD) to avoid wellbore collapse are generated. The effect of in-situ stress regimes, failure criteria, and permeable properties on the instability of the borehole has been investigated, and the applicability and accuracy of the conventional failure criteria for dynamic loading conditions have been studied by the extensive triaxial compression tests performed on Bedford limestone under different strain rates. Furthermore, two specific cases have been analyzed and results show that compared with the poroelastodynamics model, the conventional method either overestimates or underestimates the MMD, the difference of which can be as significant as 0.11 g/cm3. Not limited to the tripping operations, the developed poroelastodynamics model can be applied to any specific dynamic loading conditions with the fluid inertia neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

MMD:

Minimum mud density

MMD3DHoek–Bown :

Minimum mud density by 3D Hoek–Bown

MMDMogi−Coulomb :

Minimum mud density by Mogi–Coulomb

MMDModified Lade :

Minimum mud density by Modified Lade

NF:

Normal fault

NF-SS:

The transition between normal fault and strike-slip

SS:

Strike-slip

SS-TF:

The transition of the strike-slip and thrust fault

TF:

Thrust fault

N30°E:

The degree of 30° from North to East

B:

Junction point

Ba, Bb :

Upper and lower surface of the junction point B

Aa :

Upper surface of the point A

Cb :

Lower surface of the point C

Q :

Flow rate

Q Ba, Q Bb :

Flow rate at Ba, Bb

Q t,Ba, Q t,Bb :

Flow rate at position Bb and Bb at time t

Q t−1,Aa, Q t−1,Cb :

Flow rate at position Aa and Cb at time t − 1

t :

Time

p :

Pressure

p t,Bb, p t,Ba :

Pressure of position Bb and Ba at time t

p t−1,Aa, p t−1,Cb :

Pressure of position Aa and Cb at time t − 1

p s :

Surface pressure

S AB, S BC :

Characteristic impedances of sections AB and BC

ΔAB :

The change of pipe cross-sectional area at junction B

V t :

Pipe velocity at time t

Δp :

The loss of pressure in the artificial orifice

σ ij,j :

Stress gradient tensor

σ ij :

Stress tensor

σ r, σ θ, σ z :

Radial, tangential and vertical normal stress

σ , σ θz, σ rz :

Shear stress terms

u i :

Displacement vector

u r, u θ, u z :

Radial, tangential and vertical normal displacement

ε ij :

Strain tensor

ε r, ε θ, ε z :

Radial, tangential and vertical normal strain

ε kk :

Volumetric strain

r, θ, z :

Radial, tangential and vertical coordinate

δ ij :

Kronecker delta

ρ :

Density

G, λ :

Lame parameters

v :

Poisson’s ratio

α :

Biot coefficient

S z :

Specific storage at constant strain

Q fs :

Explicit fluid sources

k :

Permeability

µ :

Fluid viscosity

K u :

Undrained bulk modulus

K :

Drained bulk modulus

c v :

Hydraulic diffusivity

σ r 1, σ θ 1, σ z 1 :

Stress solution of Eq. (12)

σ r 2, σ θ 2, σ z 2 :

Far-field stress terms

σ v :

Vertical stress

σ H :

Maximum horizontal stress

σ h :

Minimum horizontal stress

θ :

Wellbore circumferential angle

r w :

Wellbore radius

\({\sigma }_{x}^{0}, {\sigma }_{y}^{0}, {\sigma }_{z}^{0}\),\({\sigma }_{xy}\),\({\sigma }_{xz}\),\({\sigma }_{yz}\) :

In-situ stress terms in the Cartesian coordinate

\( {\text{Diff}}_{{{\text{ave}}}} \) :

Non-dimensional average prediction difference

\({\text{Diff}}_{{{\text{abs}}}}\) :

Non-dimensional absolute prediction difference

[(σ1)pre]i :

Predicted major principal stress at failure

[(σ1)exp]i :

Experimental major principal stress at failure

UCS:

Uni-axial rock strength

n :

The total number of data points

ξ :

Non-dimensional distance

τ :

Non-dimensional time

\(\phi\) :

Non-dimensional displacement

\({S}_{\text{r}}\) :

Non-dimensional radial stress

\(\chi\) :

Non-dimensional pore pressure

c :

Compression wave velocity

\({p}_{0}\) :

Static wellbore pressure

∅:

Porosity

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Meng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A1 Numerical Solution Strategy of the Poroelastodynamics Model

For the governing equations of the poroelastodynamics model, the numerical solving method is preferred to be used. The reason is, on one hand, the pore pressure term in the displacement equation makes it difficult to find the analytical solution. On the other hand, the analytical solution is not suitable, since the dynamic surge/swab pressure changes arbitrarily which cannot be simulated simply by any specific function. To avoid the redundant unit conversion, non-dimensional quantities should be introduced to modify Eq. (12).

  • Non-dimensional distance: \(\xi =\frac{r}{{r}_{w}}\)

  • Non-dimensional displacement: \(\phi =\frac{2G}{{p}_{0}}\cdot \frac{{u}_{r}}{{r}_{w}}\)

  • Non-dimensional pore pressure: \(\chi =\frac{p}{{p}_{0}}\)

  • Non-dimensional time: \(\tau =\frac{ct}{{r}_{w}}\)

  • Non-dimensional radial stress: \({S}_{r}=\frac{{\sigma }_{r}}{{p}_{0}}\)

Introducing these non-dimensional quantities into Eq. (12):

$$\left\{ \begin{gathered} \frac{{\partial ^{2} \phi }}{{\partial \xi ^{2} }} + \frac{1}{\xi }\frac{{\partial \phi }}{{\partial \xi }} - \frac{\phi }{{\xi ^{2} }} - \alpha \frac{{1 - 2v}}{{1 - v}}\frac{{\partial \chi }}{{\partial \xi }} = \frac{{\partial ^{2} \phi }}{{\partial \tau ^{2} }} \hfill \\ \frac{{\partial ^{2} \chi }}{{\partial \xi ^{2} }} + \frac{1}{\xi }\frac{{\partial \chi }}{{\partial \xi }} = \frac{{c\dot{r}_{w} }}{{c_{v} }}\frac{\chi }{{\partial \tau }} \hfill \\ \end{gathered} \right..$$
(17)

The implicit difference method is used to differentiate the diffusion equation:

$$\left\{ \begin{gathered} \frac{{\partial ^{2} \chi }}{{\partial \xi ^{2} }} + \frac{1}{\xi }\frac{{\partial \chi }}{{\partial \xi }} = \frac{{c \cdot r_{w} }}{{c_{v} }}\frac{{\partial \chi }}{{\partial \tau }} \hfill \\ \chi \left( {1,\tau } \right) = f\left( {g\frac{{r_{w} }}{c}\tau } \right) \hfill \\ \chi \left( {\infty ,\tau } \right) = 0 \hfill \\ \chi \left( {\xi ,0} \right) = 0 \hfill \\ \end{gathered} \right..$$
(18)

Since the governing equation is in cylindrical coordinates, it is better to transform the radial direction into Cartesian coordinates. The way is as follows:

$$\xi ={\xi }_{w}{e}^{x}$$
(19)

Then, the diffusion equation in Eq. (18) becomes

$$\frac{{\partial }^{2}\chi }{\partial {x}^{2}}={\xi }^{2}\frac{c\cdot {r}_{w}}{{c}_{v}}\frac{\partial \chi }{\partial \tau }={\xi }_{w}{e}^{2x}\frac{c\cdot {r}_{w}}{{c}_{v}}\frac{\partial \chi }{\partial \tau }$$
(20)

Therefore, the implicit finite differential formula of Eq. (20) is

$$\frac{{\chi }_{i-1}^{n+1}-2{\chi }_{i}^{n+1}+{\chi }_{i+1}^{n+1}}{{\left({\Delta }x\right)}^{2}}=\left({\xi }_{w}{e}^{2ix}\frac{c\cdot {r}_{w}}{{c}_{v}}\right)\frac{{\chi }_{i}^{n+1}-{\chi }_{i}^{n}}{{\Delta }t}$$
(21)

Through some derivations, we have

$$\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - l_{1} } & 1 & {} \\ 1 & { - l_{2} } & 1 \\ \end{array} } & \cdots & {} \\ \vdots & \ddots & \vdots \\ {} & \cdots & {\begin{array}{*{20}c} 1 & { - l_{{m - 2}} } & 1 \\ {} & 1 & { - l_{{m - 1}} } \\ \end{array} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\chi _{1}^{{n + 1}} } \\ {\chi _{2}^{{n + 1}} } \\ \vdots \\ \end{array} } \\ {\chi _{{m - 2}}^{{n + 1}} } \\ {\chi _{{m - 1}}^{{n + 1}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {d_{1} - f[\omega (n + 1)]} \\ {d_{2} } \\ \vdots \\ \end{array} } \\ {d_{{m - 2}} } \\ {d_{{m - 1}} } \\ \end{array} } \right]$$
(22)

Implicit finite-difference method is also used to differentiate the displacement equation:

$$\left\{ \begin{gathered} \frac{{\partial ^{2} \phi }}{{\partial \xi ^{2} }} + \frac{1}{\xi }\frac{{\partial \phi }}{{\partial \xi }} - \frac{\phi }{{\xi ^{2} }} - \alpha \frac{{1 - 2v}}{{1 - v}}\frac{{\partial \chi }}{{\partial \xi }} = \frac{{\partial ^{2} \phi }}{{\partial \tau ^{2} }} \hfill \\ f\left[ {\omega (n + 1)\Delta \tau } \right] = \frac{{1 - v}}{{1 - 2v}}\frac{{\partial \phi }}{{e^{x} \partial x}}\left| {(x = 0)} \right. + \frac{v}{{1 - 2v}}\frac{\phi }{{e^{x} }}\left| {(x = 0)} \right. - \alpha \chi \hfill \\ 0 = \frac{1}{{e^{x} }}\left| {(x = 0)} \right.\left( {\frac{{1 - v}}{{1 - 2v}}\frac{{\partial \phi }}{{\partial x}} + \frac{v}{{1 - 2v}}\phi } \right) - \alpha \chi \hfill \\ \phi \left( {x,0} \right) = 0 \hfill \\ \end{gathered} \right..$$
(23)

Using Eq. (19), the displacement equation in Eq. (23) could be converted into

$$\frac{1}{{e}^{2}}\frac{{\partial }^{2}\phi }{\partial {x}^{2}}-\frac{\phi }{{e}^{2x}}-\alpha \frac{1-2v}{1-v}\frac{\partial \chi }{{e}^{x}\partial x}=\frac{{\partial }^{2}\phi }{\partial {\tau }^{2}}$$
(24)

Therefore, the implicit finite differential formula of Eq. (24) is

$$\frac{1}{{e}^{2i\cdot {\Delta }x}}\frac{{\phi }_{i-1}^{n+1}-2{\phi }_{i}^{n+1}+{\phi }_{i+1}^{n+1}}{{\left({\Delta }x\right)}^{2}}-\frac{{\phi }_{i}^{n+1}}{{e}^{2i\cdot {\Delta }x}}-\alpha \frac{1-2v}{1-v}\frac{{\chi }_{i+1}^{n+1}-{\chi }_{i+1}^{n+1}}{{e}^{i\cdot \varDelta x}\cdot \varDelta x}=\frac{{\phi }_{i}^{n-1}-2{\phi }_{i}^{n}+{\phi }_{i}^{n+1}}{{\left({\Delta }\tau \right)}^{2}}$$
(25)
$$\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {B - L_{1} } & 1 & {} \\ 1 & { - L_{2} } & 1 \\ \end{array} } & \cdots & {} \\ \vdots & \ddots & \vdots \\ {} & \cdots & {\begin{array}{*{20}c} 1 & { - L_{{m - 2}} } & 1 \\ {} & 1 & {C_{n} - L_{{m - 1}} } \\ \end{array} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\phi _{1}^{{n + 1}} } \\ {\phi _{2}^{{n + 1}} } \\ \vdots \\ \end{array} } \\ {\phi _{{m - 2}}^{{n + 1}} } \\ {\phi _{{m - 1}}^{{n + 1}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {E_{1} - A_{n} } \\ {E_{1} } \\ \vdots \\ \end{array} } \\ {E_{{m - 2}} } \\ {E_{{m - 1}} - D_{n} } \\ \end{array} } \right]$$
(26)
$${L}_{i}=\frac{1+\frac{2{(\varDelta t)}^{2}}{{e}^{2i\cdot \varDelta x}{(\varDelta x)}^{2}}-\frac{{\left(\varDelta t\right)}^{2}}{{e}^{2i\cdot \varDelta x}}}{\frac{{(\varDelta t)}^{2}}{{e}^{2i\cdot \varDelta x}{(\varDelta x)}^{2}}}$$
$${E}_{i}=\frac{1}{\frac{{(\varDelta t)}^{2}}{{e}^{2i\cdot \varDelta x}{(\varDelta x)}^{2}}}\left[{\phi }_{i}^{n-1}-2{\phi }_{i}^{n}+\alpha \frac{1-2v}{1-v}\frac{{(\varDelta t)}^{2}}{{e}^{2i\cdot \varDelta x}\varDelta x}\left({\chi }_{i+1}^{n+1}-{\chi }_{i}^{n+1}\right)\right]$$
$${A}_{n}=\frac{(1+\alpha )sin\left[\omega (n+1)\tau \right]}{\frac{v}{1-2v}-\frac{1-v}{1-2v}\frac{1}{\varDelta x}}, B=\frac{-\frac{1-v}{1-2v}\frac{1}{\varDelta x}}{\frac{v}{1-2v}-\frac{1-v}{1-2v}\frac{1}{\varDelta x}},$$
$${C}_{n}=\frac{\frac{1-v}{1-2v}\frac{1}{\varDelta x}}{\frac{v}{1-2v}+\frac{1-v}{1-2v}\frac{1}{\varDelta x}}, {D}_{n}=\frac{\alpha {\chi }_{m}^{n+1}}{\frac{v}{1-2v}+\frac{1-v}{1-2v}\frac{1}{\varDelta x}}.$$

The tridiagonal matrix algorithm (TDMA), also known as the Thomas algorithm, is a simplified form of Gaussian elimination that can be used to solve Eqs. (22) and (26)

After rearrangement, we have

1.2 A2 Conventional Method of Calculating Wellbore Stress

The in-situ stress of the virgin formation for a deviated well is as follows (Fig. 24):

$$\left[\begin{array}{c}{\sigma }_{x}^{0}\\ {\sigma }_{y}^{0}\\ {\sigma }_{z}^{0}\end{array}\right]=\left[\begin{array}{ccc}{cos}^{2}a\cdot {cos}^{2}i& {sin}^{2}a\cdot {cos}^{2}i& {sin}^{2}i\\ {sin}^{2}a& {cos}^{2}a& 0\\ {cos}^{2}a\cdot {sin}^{2}i& {sin}^{2}a\cdot {sin}^{2}i& {cos}^{2}i\end{array}\right]\left[\begin{array}{c}{\sigma }_{H}\\ {\sigma }_{h}\\ {\sigma }_{v}\end{array}\right]$$
$$\left[\begin{array}{c}{\sigma }_{xy}\\ {\sigma }_{xz}\\ {\sigma }_{yz}\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}-sin2a\cdot cosi& sin2a\cdot cosi& 0\\ {cos}^{2}a\cdot sin2i& {sin}^{2}a\cdot sin2i& -sin2i\\ -sin2a\cdot sini& sin2a\cdot sini& 0\end{array}\right]\left[\begin{array}{c}{\sigma }_{H}\\ {\sigma }_{h}\\ {\sigma }_{v}\end{array}\right]$$
(27)

Under static loading conditions, the conventional solution for impermeable wellbore is provided by Fjar et al. (2008). It is very well-known and not include here. The conventional solution for permeable wellbore is (Chen 2008; Ma 2015)

$${\sigma }_{r}=\left(\frac{{\sigma }_{x}^{0}+{\sigma }_{y}^{0}}{2}\right)\left(1-\frac{{r}_{w}^{2}}{{r}^{2}}\right)+\left(\frac{{\sigma }_{x}^{0}-{\sigma }_{y}^{0}}{2}\right)\left(1+\frac{{3r}_{w}^{4}}{{r}^{4}}-\frac{{4r}_{w}^{2}}{{r}^{2}}\right)cos2\theta +{\sigma }_{xy}\left(1+\frac{{3r}_{w}^{4}}{{r}^{4}}-\frac{{4r}_{w}^{2}}{{r}^{2}}\right)sin2\theta +{P}_{w}\frac{{r}_{w}^{2}}{{r}^{2}}+\left[\frac{\alpha \left(1-2v\right)}{2(1-v)}\left(1-\frac{{r}_{w}^{2}}{{r}^{2}}\right)-\varnothing \right]\left({p}_{i}-{p}_{p}\right)-\alpha {p}_{p}$$
$$\begin{aligned} \sigma _{\theta } = & \left( {\frac{{\sigma _{x}^{0} + \sigma _{y}^{0} }}{2}} \right)\left( {1 + \frac{{r_{w}^{2} }}{{r^{2} }}} \right) - \left( {\frac{{\sigma _{x}^{0} - \sigma _{y}^{0} }}{2}} \right)\left( {1 + \frac{{3r_{w}^{4} }}{{r^{4} }}} \right)\cos 2\theta - \sigma _{{xy}} \left( {1 + \frac{{3r_{w}^{4} }}{{r^{4} }}} \right)\sin 2\theta \\ & - P_{w} \frac{{r_{w}^{2} }}{{r^{2} }} + \left[ {\frac{{\alpha \left( {1 - 2v} \right)}}{{2(1 - v)}}\left( {1 - \frac{{r_{w}^{2} }}{{r^{2} }}} \right) - \emptyset } \right]\left( {p_{i} - p_{p} } \right) - \alpha p_{p} \\ \end{aligned}$$
(28)
$${\sigma }_{z}={\sigma }_{z}^{0}-v\left[\frac{2{r}_{w}^{2}}{{r}^{2}}\left({\sigma }_{H}-{\sigma }_{h}\right)cos2\theta +4{\sigma }_{xy}\frac{{r}_{w}^{2}}{{r}^{2}}sin2\theta \right]+\left[\frac{\alpha \left(1-2v\right)}{2(1-v)}\left(1-\frac{{r}_{w}^{2}}{{r}^{2}}\right)-\varnothing \right]\left({p}_{i}-{p}_{p}\right)-\alpha {p}_{p}$$
$${\sigma }_{r\theta }=\left(\frac{{\sigma }_{x}^{0}-{\sigma }_{y}^{0}}{2}\right)\left(1-\frac{{3r}_{w}^{4}}{{r}^{4}}+\frac{{2r}_{w}^{2}}{{r}^{2}}\right)sin2\theta +{\sigma }_{xy}\left(1-\frac{{3r}_{w}^{4}}{{r}^{4}}+\frac{{2r}_{w}^{2}}{{r}^{2}}\right)cos2\theta$$
$${\sigma }_{\theta z}=\left({-\sigma }_{xz}sin\theta +{\sigma }_{yz}cos\theta \right)\left(1+\frac{{r}_{w}^{2}}{{r}^{2}}\right)$$
$${\sigma }_{rz}=\left({\sigma }_{xz}cos\theta +{\sigma }_{yz}sin\theta \right)\left(1-\frac{{r}_{w}^{2}}{{r}^{2}}\right),$$

where \({p}_{0}\) is the static wellbore pressure, and \(\varnothing\) is the porosity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, M., Zamanipour, Z., Miska, S. et al. Dynamic Wellbore Stability Analysis Under Tripping Operations. Rock Mech Rock Eng 52, 3063–3083 (2019). https://doi.org/10.1007/s00603-019-01745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01745-4

Keywords

Navigation