Skip to main content
Log in

Influence of Thermal Treatment on the Thermal Conductivity of Beishan Granite

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Granitic rocks are potential rock types for hosting high-level radioactive waste (HLW) repositories at depth. A better understanding of rock thermal conductivity is essential to develop HLW repositories successfully. In this work, experimental investigations on the thermal conductivity of thermally treated Beishan granite were conducted. Disk specimens preconditioned at 105 °C were heated to different temperatures (200, 300, 400, 550, 650, and 800 °C) and then cooled to room temperature for testing. Conventional physical properties such as bulk density, porosity, and P-wave velocity were measured under the effect of thermal treatment. Scanning electron microscope was used to characterize thermally induced microcracks in the rock. Thermal conductivities of the treated specimens under dry and water-saturated conditions were determined using the transient plane source method, and the effect of water saturation on the thermal conductivity was investigated. The influences of temperature and axial compression stress on the thermal conductivity were also studied. Results indicate that the thermal conductivity of the specimens depends strongly on the thermal treatment temperature. The thermal conductivity decreases nonlinearly with applied temperature, because of growth and propagation of microcracks in the specimens. On the other hand, water saturation plays an important role in increasing the thermal conductivity. In addition, significant differences exist in the thermal conductivity behaviors of the specimens when subjected to different ambient temperatures and compression stresses. Based on the experimental data, models considering the effect of porosity were established for describing the effects of water saturation, ambient temperature, and compression stress on the thermal conductivity of thermally treated rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

M p :

Mass of rock preconditioned at 105 °C (g)

M t :

Mass of rock after thermal treatment (g)

V p :

Bulk volume of rock preconditioned at 105 °C (cm3)

V t :

Bulk volume of rock after thermal treatment (cm3)

ρ p :

Bulk density of rock preconditioned at 105 °C (g/cm3)

ρ t :

Bulk density of rock after thermal treatment (cm3)

n p :

Porosity of rock preconditioned at 105 °C (%)

n t :

Porosity of rock after thermal treatment (%)

v p :

P-wave velocity of rock preconditioned at 105 °C (m/s)

v t :

P-wave velocity of rock after thermal treatment (m/s)

λ p_dry :

Thermal conductivity of rock preconditioned at 105 °C (W/mK)

λ t_dry :

Thermal conductivity of rock after thermal treatment (W/mK)

λ p_sat :

Thermal conductivity of untreated rock under water-saturated condition (W/mK)

λ t_sat :

Thermal conductivity of thermally treated rock under water-saturated condition (W/mK)

T t :

Thermal treatment temperature (°C)

T :

Ambient temperature (°C)

R mv :

Mass variation ratio of rock before and after thermal treatment (%)

R ve :

Volume expansion ratio of rock before and after thermal treatment (%)

S :

Effect of water saturation on rock thermal conductivity (%)

S t :

Effect of water saturation on thermal conductivity of thermally treated rock (%)

λ t_T :

Thermal conductivity of thermally treated rock at different ambient temperatures (W/mK)

R t _ r :

Increase rate of thermal conductivity of thermally treated rock under uniaxial compression (%)

λ t_l :

Thermal conductivity of thermally treated rock at the last compression stress (W/mK)

λ t_0 :

Thermal conductivity of thermally treated rock at zero stress (W/mK)

R t :

Thermal conductivity ratio of thermally treated rock under uniaxial compression

λ t_c :

Thermal conductivity of thermally treated rock subjected to different compression stresses (W/mK)

σ 1 :

Axial compression stress (MPa)

σ 3 :

Confining stress (MPa)

A :

Fit coefficient

B :

Fit coefficient

C :

Fit coefficient

References

  • Adl-Zarrabi B (2004) Thermal properties: heat conductivity and heat capacity determined using the TPS method and mineralogical composition by modal analysis. Svensk Kärnbränslehantering AB, Oskarshamn

    Google Scholar 

  • Ahn J, Apted MJ (2010) Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  • Birch F, Clark H (1940) The thermal conductivity of rocks and its dependence upon temperature and composition. Am J Sci 238:613–635

    Article  Google Scholar 

  • Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22:1456–1461

    Article  Google Scholar 

  • Chen S, Yang C, Wang G (2017) Evolution of thermal damage and permeability of Beishan granite. Appl Therm Eng 110:1533–1542

    Article  Google Scholar 

  • Cho WJ, Kwon S (2010) Estimation of the thermal properties for partially saturated granite. Eng Geol 115:132–138

    Article  Google Scholar 

  • Cho WJ, Kwon S, Choi JW (2009) The thermal conductivity for granite with various water contents. Eng Geol 107:167–171

    Article  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union, Washington, pp 105–126

    Chapter  Google Scholar 

  • David C, Menéndez B, Darot M (1999) Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int J Rock Mech Min Sci 36:433–448

    Google Scholar 

  • Demırcı A, Görgülü K, Durutürk YS (2004) Thermal conductivity of rocks and its variation with uniaxial and triaxial stress. Int J Rock Mech Min Sci 41:1133–1138

    Google Scholar 

  • Fredrich JT, Wong TF (1986) Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res 91:12743–12764

    Article  Google Scholar 

  • Freire-Lista DM, Fort R, Varas-Muriel MJ (2016) Thermal stress-induced microcracking in building granite. Eng Geol 206:83–93

    Article  Google Scholar 

  • Géraud Y (1994) Variations of connected porosity and inferred permeability in a thermally cracked granite. Geophys Res Lett 21:979–982

    Article  Google Scholar 

  • Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804

    Article  Google Scholar 

  • Hartmann A, Rath V, Clauser C (2005) Thermal conductivity from core and well log data. Int J Rock Mech Min Sci 42:1042–1055

    Article  Google Scholar 

  • Heard HC, Page L (1982) Elastic moduli, thermal expansion, and inferred permeability of two granites to 350 °C and 55 megapascals. J Geophys Res 87:9340–9348

    Article  Google Scholar 

  • Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks—a review. Int J Rock Mech Min Sci Geomech Abstr 20:3–10

    Article  Google Scholar 

  • Hilsenrath J, Beckett CW, Benedict WS, Fano L, Hoge HJ, Masi JF, Nuttall RL, Touloukian YS, Woolley HW (1955) Tables of thermal properties of gases. United States Government Printing Office, Washington

    Google Scholar 

  • Homand-Etienne F, Houpert R (1989) Thermally induced microcracking in granites: characterization and analysis. Int J Rock Mech Min Sci Geomech Abstr 26:125–134

    Article  Google Scholar 

  • Homand-Etienne F, Troalen J-P (1984) Behaviour of granites and limestones subjected to slow and homogeneous temperature changes. Eng Geol 20:219–233

    Article  Google Scholar 

  • Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76:1278–1308

    Article  Google Scholar 

  • Hot Disk (2007) Instruction manual of Hot Disc thermal constants analyser. Hot Disk AB, Gothenburg

    Google Scholar 

  • Hudson JA, Cosgrove JW, Kemppainen K, Johansson E (2011) Faults in crystalline rock and the estimation of their mechanical properties at the Olkiluoto site, western Finland. Eng Geol 117:246–258

    Article  Google Scholar 

  • Inserra C, Biwa S, Chen Y (2013) Influence of thermal damage on linear and nonlinear acoustic properties of granite. Int J Rock Mech Min Sci 62:96–104

    Google Scholar 

  • ISRM (1979) Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci Geomech Abstr 16:143–151

    Google Scholar 

  • Jansen DP, Carlson SR, Young RP, Hutchins DA (1993) Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite. J Geophys Res 98:22231–22243

    Article  Google Scholar 

  • Kumari WGP, Ranjith PG, Perera MSA, Shao S, Chen BK, Lashin A, Arifi NA, Rathnaweera TD (2017) Mechanical behaviour of Australian Strathbogie granite under in situ stress and temperature conditions: an application to geothermal energy extraction. Geothermics 65:44–59

    Article  Google Scholar 

  • Kumari WGP, Ranjith PG, Perera MSA, Chen BK (2018) Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: thermal stimulation method for geothermal energy extraction. J Petrol Sci Eng 162:419–433

    Article  Google Scholar 

  • Lagüela S, Bison P, Peron F, Romagnoni P (2015) Thermal conductivity measurements on wood materials with transient plane source technique. Thermochim Acta 600:45–51

    Article  Google Scholar 

  • Lima JJDC, Paraguassú AB (2004) Linear thermal expansion of granitic rocks: influence of apparent porosity, grain size and quartz content. Bull Eng Geol Env 63:215–220

    Google Scholar 

  • Liu S, Xu J (2014) Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci 71:188–193

    Google Scholar 

  • Log T, Gustafsson SE (1995) Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19:43–49

    Article  Google Scholar 

  • Mahmutoglu Y (1998) Mechanical behaviour of cyclically heated fine grained rock. Rock Mech Rock Eng 31:169–179

    Article  Google Scholar 

  • Menéndez B, David C, Darot M (1999) A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser microscopy. Phys Chem Earth Part A 24:627–632

    Article  Google Scholar 

  • Menéndez B, David C, Nistal AM (2001) Confocal scanning laser microscopy applied to the study of pore and crack networks in rocks. Comput Geosci 27:1101–1109

    Article  Google Scholar 

  • Miao SQ, Li HP, Chen G (2014) Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J Therm Anal Calorim 115:1057–1063

    Article  Google Scholar 

  • Michel D, Yves G, Marie-Laure B (1992) Permeability of thermally cracked granite. Geophys Res Lett 19:869–872

    Article  Google Scholar 

  • Nagaraju P, Roy S (2014) Effect of water saturation on rock thermal conductivity measurements. Tectonophysics 626:137–143

    Article  Google Scholar 

  • Nasseri MHB, Schubnel A, Young RP (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min Sci 44:601–616

    Article  Google Scholar 

  • Özkahraman HT, Selver R, Işık EC (2004) Determination of the thermal conductivity of rock from P-wave velocity. Int J Rock Mech Min Sci 41:703–708

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (2015) Measurements of rock thermal conductivity with a Transient Divided Bar. Geothermics 53:183–189

    Article  Google Scholar 

  • Peng J, Rong G, Cai M, Yao MD, Zhou CB (2016) Physical and mechanical behaviors of a thermal-damaged coarse marble under uniaxial compression. Eng Geol 200:88–93

    Article  Google Scholar 

  • Ramires MLV, Nieto de Castro CA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377–1381

    Article  Google Scholar 

  • Ray L, Bhattacharya A, Roy S (2007) Thermal conductivity of Higher Himalayan Crystallines from Garhwal Himalaya, India. Tectonophysics 434:71–79

    Article  Google Scholar 

  • Richter D, Simmons G (1974) Thermal expansion behavior of igneous rocks. Int J Rock Mech Min Sci Geomech Abstr 11:403–411

    Article  Google Scholar 

  • Shao S, Ranjith PG, Wasantha PLP, Chen BK (2015) Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy. Geothermics 54:96–108

    Article  Google Scholar 

  • Simmons G, Cooper HW (1978) Thermal cycling cracks in three igneous rocks. Int J Rock Mech Min Sci Geomech Abstr 15:145–148

    Article  Google Scholar 

  • Solórzano E, Reglero JA, Rodríguez-Pérez MA, Lehmhus D, Wichmann M, de Saja JA (2008) An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int J Heat Mass Transf 51:6259–6267

    Article  Google Scholar 

  • Sun Q, Zhang W, Xue L, Zhang Z, Su T (2015) Thermal damage pattern and thresholds of granite. Environ Earth Sci 74:2341–2349

    Article  Google Scholar 

  • Sundberg J, Back PE, Ericsson LO, Wrafter J (2009a) Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging. Int J Rock Mech Min Sci 46:1023–1028

    Article  Google Scholar 

  • Sundberg J, Back PE, Christiansson R, Hökmark H, Ländell M, Wrafter J (2009b) Modelling of thermal rock mass properties at the potential sites of a Swedish nuclear waste repository. Int J Rock Mech Min Sci 46:1042–1054

    Article  Google Scholar 

  • Urquhart A, Bauer S (2015) Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from −75 °C to 300 °C. Int J Rock Mech Min Sci 78:350–352

    Google Scholar 

  • Wang J (2010) High-level radioactive waste disposal in China: update 2010. J Rock Mech Geotech Eng 2:1–11

    Google Scholar 

  • Wang J (2014) On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China. J Rock Mech Geotech Eng 6:99–104

    Article  Google Scholar 

  • Wang HF, Bonner BP, Carlson SR, Kowallis BJ, Heard HC (1989) Thermal stress cracking in granite. J Geophys Res 94:1745–1758

    Article  Google Scholar 

  • Xu G, LaManna JM, Clement JT, Mench MM (2014) Direct measurement of through-plane thermal conductivity of partially saturated fuel cell diffusion media. J Power Sources 256:212–219

    Article  Google Scholar 

  • Yang Y, Voskuilen TG, Pourpoint TL, Guildenbecher DR, Gore JP (2012) Determination of the thermal transport properties of ammonia borane and its thermolysis product (polyiminoborane) using the transient plane source technique. Int J Hydrogen Energy 37:5128–5136

    Article  Google Scholar 

  • Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197

    Article  Google Scholar 

  • Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103

    Article  Google Scholar 

  • Yong C, Wang C (1980) Thermally induced acoustic emission in westerly granite. Geophys Res Lett 7:1089–1092

    Article  Google Scholar 

  • Zhang W, Sun Q, Hao S, Geng J, Lv C (2016) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98:1297–1304

    Article  Google Scholar 

  • Zhang F, Zhao JJ, Hu DW, Skoczylas F, Shao JF (2018) Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mech Rock Eng 5:677–694

    Article  Google Scholar 

  • Zhao Z (2016) Thermal influence on mechanical properties of granite: a microcracking perspective. Rock Mech Rock Eng 49:747–762

    Article  Google Scholar 

  • Zhao XG, Wang J, Chen F, Li PF, Ma LK, Xie JL, Liu YM (2016) Experimental investigations on the thermal conductivity characteristics of Beishan granitic rocks for China’s HLW disposal. Tectonophysics 683:124–137

    Article  Google Scholar 

  • Zhao Z, Liu Z, Pu H, Li X (2018) Effect of thermal treatment on Brazilian tensile strength of granites with different grain size distributions. Rock Mech Rock Eng 51:1293–1303

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the China Atomic Energy Authority through the geological disposal program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. G. Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X.G., Zhao, Z., Guo, Z. et al. Influence of Thermal Treatment on the Thermal Conductivity of Beishan Granite. Rock Mech Rock Eng 51, 2055–2074 (2018). https://doi.org/10.1007/s00603-018-1479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1479-0

Keywords

Navigation